首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
We have calculated the electronic structure of SrRu1−xMnxO3 using the full potential linearized augmented plane wave method by LSDA and LSDA+U. The antiparallel alignment between the Mn and Ru ions are consistent with the competition between ferromagnetism and antiferromagnetism in the low Mn-doped polycrystalline samples. This is in contrast to the appearance of quantum critical point and FM and AFM transitions in the single crystal measurement. Our results show that the discrepancy between different experimental phase diagrams is related to the conditions of sample preparation and also the difference between the degree of magnetic interactions between the Mn and Ru moments. The DOS and the calculated Mn magnetic moment is similar to the magnetic moment of a purely ionic compound with d3 configuration. The AFM state has band gap of 1.2 eV at the Fermi energy predicting an insulating behavior.  相似文献   

2.
We have carried out accurate generalized-gradient-corrected fully-relativistic full-potential calculations for Sr1−xCaxRuO3 (x=0, 0.25, 0.5, 0.75, and 1) in para-, ferro-, and A-, C-, and G-type antiferromagnetic configurations. We have performed electronic structure calculations for the experimentally observed orthorhombic structure as well as the hypothetical cubic structure. Our results are analyzed with the help of total, site-, spin-, and orbital-projected density of states. The total-energy studies show that CaRuO3 stabilizes in the G-type antiferromagnetic state. The octahedral tilting owing to the relatively small radius of Ca2+ leads to weak hybridization between Ru 4d and O 2p. This weak hybridization along with exchange splitting causes a pseudogap-like feature close to the Fermi level, which should stabilize G-type antiferromagnetic ordering in CaRuO3. However, powder neutron diffraction data on CaRuO3 taken at 8 and do not show any magnetic peaks, implying that CaRuO3 exhibits a spin-glass-like state with dominant short-range antiferromagnetic interaction. The calculated magnetic ground state of Sr1−xCaxRuO3 is found to be consistent with the experimental findings. We have also calculated optical spectra as well as X-ray and ultra-violet photoemission spectra and Ru and O K-edge X-ray absorption spectra for G-type CaRuO3 and found good agreement with available experimental spectra.  相似文献   

3.
The Mn2−xFexP0.5As0.5 compounds (x = 0.7 and 1.0) studied exhibit the magnetic phase transitions, which are accompanied by a magnetic entropy change. For x = 1 the PM–FM transition is of the first order one with a weak (2–3 K) thermal hysteresis in the vicinity of TC = 275 K. The Mn1.3Fe0.7P0.5As0.5 compound possesses two magnetic transitions: the second-order PM–FM transition at TC = 190 K, followed by the FM–AFM transition at TN = 90 K, leading to normal and inverse magnetocaloric effects, respectively. The maximum values of magnetic entropy change are equal to 17 J kg−1 K−1 in MnFeP0.5As0.5 and 5 J kg−1 K−1 in Mn1.3Fe0.7P0.5As0.5 for a field change of 5 T. The magnetic entropy changes were calculated using both the isofield magnetization curves versus temperature and the isothermal magnetization curves versus applied magnetic field. The magnetocaloric effect in MnFeAs0.5P0.5 is discussed in the terms of both the thermodynamic Maxwell relation and the Clausius–Clapeyron equation.  相似文献   

4.
The clean and affordable production of green hydrogen is condicio sine qua non to endorse a carbon-neutral socioeconomic system. Complementing sluggish oxygen evolution reaction with a more thermodynamically favored urea oxidation reaction promotes energy-saving hydrogen production and environmental remediation. In this work, carbon-incorporated ruthenium–cobalt mixed metal phosphide was meticulously designed and synthesized via self-assembling and pyrolysis procedure with the optimal Ru doping level. A superior performance toward urea oxidation reaction and oxygen evolution reaction has been achieved: exhibiting an ultralow potential/overpotential of 1.30 V versus reversible hydrogen electrode (vs. RHE) and 210 mV at a current density of 10 mA/cm2, respectively. Such mild and optimal Ru doping on the Co2P/CoP mixed phase allowed the necessary structural tuning for superior catalytic performance via modulating the electronic structure and its interaction with the adsorbed species. The rationale behind their working relationship has been developed using multimodal spectroscopic/analytical techniques.  相似文献   

5.
We report a comprehensive first-principles investigation of the structural, electronic, magnetic and phase transition properties in multiferroic compound PbVO3 with systematic comparisons of various exchange-correlation (XC) functionals. The antiferromagnetic (AFM) insulating ground state of tetragonal phase has been obtained in the framework of the band theory, which is characterized by C-type two-dimensional AFM magnetic ordering in the ab plane. A first-order structural transformation from tetragonal phase to idea cubic perovskite structure takes place at 1.75 GPa, corresponding to the ferroelectric to paraelectric phase transition. Electronic structure calculations suggest that the ground state of the cubic paraelectric phase is a nonmagnetic orbital-disorder metal.  相似文献   

6.
Metal-rich borides with the Ti3Co5B2-type structure represent an ideal playground for tuning magnetic interactions through chemical substitutions. In this work, density functional theory (DFT) and experimental studies of Ru-rich quaternary borides with the general composition A2MRu5B2 (A=Zr, Hf, M=Fe, Mn) are presented. Total energy calculations show that the phases Zr2FeRu5B2 and Hf2FeRu5B2 prefer ground states with strong antiferromagnetic (AFM) interactions between ferromagnetic (FM) M-chains. Manganese substitution for iron lowers these antiferromagnetic interchain interactions dramatically and creates a strong competition between FM and AFM states with a slight preference for AFM in Zr2MnRu5B2 and for FM in Hf2MnRu5B2. Magnetic property measurements show a field dependence of the AFM transition (TN): TN is found at 0.1 T for all phases with predicted AFM states whereas for the predicted FM phase it is found at a much lower magnetic field (0.005 T). Furthermore, TN is lowest for a Hf-based phase (20 K) and highest for a Zr-based one (28 K), in accordance with DFT predictions of weaker AFM interactions in the Hf-based phases. Interestingly, the AFM transitions vanish in all compounds at higher fields (>1 T) in favor of FM transitions, indicating metamagnetic behaviors for these Ru-rich phases.  相似文献   

7.
The structural stability of TiS2 under high pressures has been investigated by using first-principles plane-wave pseudopotential density functional theory within the local density approximation (LDA). The obtained results predict that TiS2 undergoes a pressure-induced first-order phase transition from its trigonal 1T-type structure to orthorhombic cotunnite-type structure at 16.20 GPa. The calculated transition pressure agrees quite well with the experimental finding of 20.7 GPa. The equation of state determined from our calculated results yields bulk moduli of 58.91 and 118.10 GPa for the 1T-type and cotunnite-type phases, respectively. This indicates higher incompressibility of the high-pressure phase of TiS2. In addition, the electronic structures of the two phases of TiS2 are also calculated and discussed. The results suggest the structural phase transition of TiS2 at high pressure is followed by a semimetal to metal electronic transition.  相似文献   

8.
Reactions of Schiff bases (H2apahR) derived from acetophenone and acid hydrazides, triethylamine and [Ru(PPh3)3Cl2] (1:2:1 mole ratio) in methanol provide cyclometallated ruthenium(III) complexes of formula trans-[Ru(apahR)(PPh3)2Cl] in 74–81% yields. The complexes have been characterized by elemental analysis, magnetic susceptibility, spectroscopic (infrared, electronic and EPR) and electrochemical measurements. X-ray crystal structures of two representative complexes have been determined. In each complex, the metal centre is in distorted octahedral CNOClP2 coordination sphere assembled by the C,N,O-donor meridionally spanning apahR2?, the chloride and the two mutually trans-oriented PPh3 molecules. All the complexes are one-electron paramagnetic (μeff. = 1.85–1.98 μB) and display rhombic EPR spectra in frozen (120 K) dichloromethane-toluene (1:1) solution. Electronic spectra of the complexes display several absorptions within 470–270 nm due to ligand-to-metal charge transfer and ligand centred transitions. The complexes are redox active and display a Ru(III)  Ru(II) reduction and a Ru(III)  Ru(IV) oxidation in the potential ranges ?0.66 to ?0.70 V and 0.75 to 0.80 V (vs. Ag/AgCl), respectively.  相似文献   

9.
《Solid State Sciences》2007,9(7):564-573
High pressure and temperature are used to synthesise perovskite related phases in the Sr–Cr(IV)–O system. The n = 1, 2 and ∞ members of the Srn+1CrnO3n+1 family have been obtained. Another new member, n = 3 as well as an hexagonal layered perovskite have also been observed by transmission electron microscopy and electron diffraction. The average structure of Sr3Cr2O7 as determined by XRD has space group I4/mmm, whereas its microstructure includes a large amount of defects both in the layer stacking and within the layers. 2D magnetism and a large electrical resistance in Sr3Cr2O7 are observed as opposed to the nonlocalized electronic behaviour of SrCrO3.  相似文献   

10.
11.
The compounds CaFeSi2O6 (hedenbergite), CaNiGe2O6, CaCoGe2O6 and CaMnGe2O6 have been synthesized by hydrothermal or ceramic sintering techniques and were subsequently characterized by SQUID magnetometry and powder neutron diffraction in order to determine the magnetic properties and the spin structure at low temperature. All four compounds reveal the well-known clinopyroxene structure-type with monoclinic symmetry, space group C2/c, Z=4 at all temperatures investigated. Below 35 K hedenbergite shows a ferromagnetic (FM) coupling of spins within the infinite M1 chains of edge-sharing octahedra. This FM coupling dominates an antiferromagnetic (AFM) coupling between neighbouring chains. The magnetic moments lie within the a-c plane and form an angle of 43° with the crystallographic a-axis. Magnetic ordering in CaFeSi2O6 causes significant discontinuities in lattice parameters, Fe-O bond lengths and interatomic Fe-Fe distances through the magnetic phase transition, which could be detected from the Rietveld refinements of powder neutron diffraction data. CaCoGe2O6 and CaNiGe2O6 show magnetic ordering below 18 K, the spin structures are similar to the one in hedenbergite with an FM coupling within and an AFM coupling of spins between the M1 chains. The moments lie within the a-c plane. The paramagnetic Curie temperature, however, decreases from CaFeSi2O6 (+40.2 K) to CaCoGe2O6 (+20.1 K) and CaNiGe2O6 (−13.4 K), suggesting an altered interplay between the concurring AFM and FM interaction in and between the M1 chains. CaMnGe2O6 finally shows an AFM ordering below 11 K. Here the magnetic moments are mainly oriented along the a-axis with a small tilt out from the a-c plane.  相似文献   

12.
In order to reveal electronic properties of a plutonium-gallium intermetallic compound (Pu3Ga), and its potential implication for microscopic mechanisms for effects of Ga doping on the electronic and structural properties, as well as the phase stability of delta-phase Pu Ga alloy, a first principles calculation on the magnetic properties of this system is implemented by using density functional theory (DFT) plus on-site Coulomb repulsion U with nonmagnetic, ferromagnetic, and antiferromagnetic (AFM) orders, while the intermediate correlation effect, which is beyond the scope of pure itinerant and localized electronic model, is investigated by using a many-body technique combining DFT and dynamical mean-field theory considering the dynamical correlation effect due to the incompletely filled Pu 5f orbitals and the relativistic effect by inclusion of spin-orbit coupling (SOC). Our findings show that Pu3Ga is a bad metal with AFM order, which is in good agreement with the experimental magnetic measurement. SOC further splitting Pu 5f states into j = 5/2 and j = 7/2 manifolds, the former exhibits metallic character, while the latter insulating feature. Occupation analysis establishes that an average occupancy of Pu 5f electrons in Pu3Ga is nf = 4.9598, this result together with the spectrum function indicates that 5f electrons in this system might be a localized state with strong valence fluctuation. Additionally, optimization of lattice parameter, density of state, and momentum-resolved electronic spectrum function are also presented.  相似文献   

13.
Group III-nitrides are of great interest in both fundamental sciences and technical application. Most of the common nitrides are well known as hard and wide band gap semiconductor materials. In general they have been studied in zinc-blende and wurtzite phases. In this paper, we focus our attention to structural, electronic, phase transition and elastic properties of aluminum nitride (AlN) in zinc-blende and rock-salt phases. A little work has been reported either theoretically or experimentally on elastic and electronic properties of AlN; especially in RS phase. All the calculations are performed using the full-potential linearized augmented plane-wave approach plus local orbitals within the framework of density functional theory as implemented in the Wien2k code. The generalized gradient approximation based on the Perdew–Burke–Ernzerhof is used for the exchange and correlation functional. We determine the full set of first order elastic constants, C11, C12 and C44 at zero pressure to confirm the mechanical stability and hardness, which have not been established either experimentally or theoretically for RS phase. In the study obvious phase transition from ZB phase to RS phase due to pressure effect has been obtained at 12.75 GPa.  相似文献   

14.
Stability of different phases of AMoO4 (A = Mg, Ni) molybdates versus A–O bonding and the corresponding electronic structures are examined from first principles. The energy-volume equations of state for three forms (β, α, ω), characterized by decreasing volumes in the sequence of Mg and Ni molybdates are established. While NiMoO4 is energy stabilized in the sequence β → α → ω, an opposite behavior is identified for the Mg molybdate. Charge analysis characterizing ionic Mg2+ versus covalent Ni+1.2 behaviors can explain the trend. Electronic band structure also shows large differences: MgMoO4 is insulating with a ~2 eV band gap while in a magnetic state, NiMoO4 is a small gap (~0.2 eV) semi-conductor. Chemical bonding properties show weak Mg and strong Ni bonding with oxygen, while identifying the Mo–O interaction as prevailing.  相似文献   

15.
A triruthenium μ-alkyl complex, (Cp1Ru)3(μ-η2-HCHCH2R)(μ-CO)23- CO) (2a, R = Ph; 2b, R = tBu, Cp1 = η5-C5Me5), which contains a two-electron and three-center interaction among Ru, C, and H atoms, has been synthesized by the reaction of a perpendicularly coordinated 1-alkyne complex, {Cp1Ru(μ-H)}3322(⊥)-RCCH) (1a; R = Ph, 1b; R = tBu), with carbon monoxide. A diffraction study for 2b clearly represented the bridging neohexyl group on one Ru–Ru edge. This μ-alkyl group exhibited dynamic behavior resulting in site-exchange of the α-hydrogen atoms between the terminal and bridging positions, which was synchronized with the migration of the μ-alkyl groups between the two ruthenium atoms. The agostic C–H bond was readily cleaved upon pyrolysis. Whereas the μ-phenethylidene intermediate resulting from the σ-C–H bond cleavage has never been observed, a μ3-phenethylidyne complex, {Cp1Ru(μ-CO)}33-CCH2Ph) (7a), and a μ3-methylidyne complex, {Cp1Ru(μ-CO)}33-CH) (8), were obtained by the successive C–H/C–H and C–H/C–C bond cleavages at the μ-alkyl moiety, respectively.  相似文献   

16.
《Solid State Sciences》2012,14(6):661-667
The crystallization process, microstructure and dielectric properties of [(1 − x)PbO–xBaO]–Na2O–Nb2O5–SiO2 (PBNNS) (0 ≤ x ≤ 1) glass-ceramics prepared by controlled crystallization were investigated. The crystallization strategies for acquiring nano-crystallized PBNNS glass-ceramics were monitored by differential thermal analysis (DTA). X-ray diffraction (XRD) analysis revealed a major crystal phase transition in PBNNS glass matrix as the crystallization temperature increased. At low temperatures (700–750 °C), the major crystal phases precipitating in the glass matrix are identified as Pb2Nb2O7 for x = 0, Ba2NaNb5O15 for x = 1 and their solid solution for 0.2 ≤ x ≤ 0.8; while at higher temperatures (≥850 °C), heat treatment produces different crystalline phases, PbNb2O6 and NaNbO3 for x = 0, Ba2NaNb5O15 and NaNbO3 for x = 1, and the solid solution of these three phases for 0.2 ≤ x ≤ 0.8. Corresponding to the result of phase transition, microstructural observation proves increasing crystallite sizes with increasing temperature of heat treatment. At different crystallization temperatures, the dielectric properties of the [(1 − x)PbO–xBaO]–Na2O–Nb2O5–SiO2 glass-ceramics show a strong dependence on the chemical composition x. At low temperatures (700–750 °C), a maximum of the dielectric constant of the PBNNS glass-ceramic is found for the composition x = 0.6; while at higher crystallization temperatures (≥850 °C), the dielectric constants of all samples (0 ≤ x ≤ 1) exhibit decreasing values with increasing x.  相似文献   

17.
In this communication, the study on the effect of Ni2+ substitution on structural, magnetic and electrical transport properties were performed in Pr0.75Na0.25Mn1-xNixO3 (x = 0–0.10) ceramics synthesized using conventional solid-state method. X-ray diffraction patterns showed that all samples were present in single phase and crystallized in orthorhombic structure with Pnma space group. Rietveld refinement analysis revealed unit cell volume slight increase with increase Ni concentration, thereby indicating partial substitution of Ni2+ at Mn3+. The presence majority of Ni2+ states in the compound were confirmed by X-ray photoelectron spectrum. Tolerance factor calculation suggested that Ni substitution exerted no strong effect on structural distortion. For un-doped sample (x = 0), AC susceptibility (χ′) against temperature (T) curve showed paramagnetic (PM)–antiferromagnetic(AFM) behavior at Neel temperature (TN) of approximately 170 K. Furthermore, resistivity (ρ) against temperature (T) curve showed an insulating behavior for the whole measured temperature range. The χ′ against T curve of x = 0 sample showed broad peak at approximately 218 K which was attributed to the onset of charge ordered (CO) state. No such broad peak was observed in Ni-substituted samples which indicated the weakening of CO state. Moreover, χ′ measurements exhibited successful inducement of PM–FM transition with Curie temperature (TC), decreasing from 132 K (x = 0.02) to 92 K (x = 0.08). Electrical resistivity measurement on samples (x = 0.02–0.08) displayed inducement of metal–insulator transition, where transition temperature (TMI) decreased and resistivity increased, with x before re-entrant insulating behavior at x = 0.10. Notably, upturn resistivity was observed below 40 K for x = 0.06 and 0.08 samples. The suppression of CO state and inducement of ferromagnetic-metallic (FMM) state beginning from x = 0.02 sample was attributed to the reduced degree of Jahn–Teller distortion and Coulomb interaction among Mn ions, as well as the presence of ferromagnetic superexchange (FM SE) interaction among Ni2+–O–Mn4+ which improved the alignment charge carrier spins and induced the double-exchange (DE) interaction among Mn3+–O–Mn4+. The decrease in TC and TMI with increased x may be due to the enhanced AFM SE interactions of Mn3+–O–Mn3+, Mn4+–O–Mn4+ and Ni2+–O–Ni2+ which decreased the FM SE interaction of Ni2+–O–Mn4+. Consequently, the effective DE interaction was decreased. In addition, the decreased metallic behavior and re-entrant insulating behavior for x = 0.10 sample was due to the strong AFM interaction between Ni2+ ions which consequently contributed to the suppression of FM SE and DE interactions. The observed upturn resistivity below 40 K for x = 0.06 and 0.08 samples was attributed to the Kondo-like effect which resulted from the interaction between itinerant conduction electron spin and localized spin impurity.  相似文献   

18.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

19.
The silicide Sc2RuSi2 was synthesized from the elements by arc-melting. The structure was refined on the basis of single crystal X-ray diffractometer data: Zr2CoSi2 type, C2/m, a = 1004.7 (2), b = 406.8 (1), c = 946.6 (2) pm, β = 117.95 (2), wR2 = 0.0230, 743 F2 values, and 32 variables. The structure consists of a rigid three-dimensional [RuSi2] network in which the two crystallographically independent scandium atoms fill larger cages of coordination numbers 16 and 15, respectively. The [RuSi2] network shows short Ru–Si distances (234–247 pm) and two different Si2 pairs: Si1–Si1 at 247 and Si2–Si2 at 243 pm. Each silicon atom has trigonal prismatic Sc6 (for Si2) or Sc4Ru2 (for Si1) coordination. These building units are condensed via common edges and faces. The various Sc–Sc distances between the prisms range from 327 to 361 pm. From electronic structure investigation within DFT, chemical bonding shows a major role of Ru–Si bonding and the presence of strong electron localization around Si–Si pairs pointing to a polyanionic silicide network [RuSi2]δ?. The 45Sc MAS-NMR spectra recorded at 11.7 and 9.4 T clearly resolve the two distinct scandium sites. The large electric field gradients present at both scandium sites result in typical line shapes arising from second-order quadrupole perturbation effects.  相似文献   

20.
The electronic structures and chemical bonding of selected ternary compounds of the A4T7X6 family (of U4Re7Si6-type) intermetallics have been studied by ab initio methods. The calculations for two series: Mg4Rh7P6, Sc4Co7Ge6, Ti4Co7Ge6 and uranium containing U4Re7Si6, U4Ru7Ge6, and U4Ru7As6 show common bonding characteristics pertaining to main T1–X and T2–X interactions (T = transition metal and X = p-element) due to the peculiar crystal chemistry with T1@X6 and T2@X4 coordination polyhedra. The uranium compounds are found to be stabilized in a spin polarized ferromagnetic configuration, especially for U4Ru7Ge6 (in agreement with experiment) and U4Ru7As6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号