首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel route for a preparation of eccentric Au-titania core-shell nanoparticles using gold nanoparticles (AuNPs) with block copolymer shells as a template is reported. AuNPs with poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) block copolymer shells are first prepared by UV irradiation of the solution of PVP-b-PEO/HAuCl(4) complexes. Then the sol-gel reaction of titanium tetra-isopropoxide (TTIP) selectively on the surfaces of AuNPs leads to Au-titania core-shell composite nanoparticles. The eccentric Au-titania core-shell nanoparticles are obtained from the Au-titania core-shell composite nanoparticles by removal of organic interlayer by UV treatment. Photocatalytic activities of the resulting eccentric core-shell nanoparticles are investigated in terms of the degradation of methylene blue (MB). The results show that the eccentric core-shell structures endow the catalyst with greatly enhanced photocatalytic activity.  相似文献   

2.
Crystallization behavior via hydrogen bonding interaction in amphiphilic block copolymer/surfactant mixtures consisting of poly(2-vinyl pyridine)-block-poly(ε-caprolactone) (P2VP-PCL) and 3-pentadecylphenol (PDP) were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The P2VP-PCL/PDP mixtures exhibit eutectic crystallization behavior; the eutectic composition is approximately at 70 wt.% PDP. Scanning probe microscopy (SPM) observation revealed the microphase structure in the P2VP-PCL/PDP mixtures and the unique eutectic morphology at the eutectic composition, which was further confirmed by small angle X-ray scattering (SAXS) results. To our knowledge, this is the first example of eutectic crystallization observed in amphiphilic block copolymer/surfactant systems. The FTIR study proved that there are competitive hydrogen bonding interactions between P2VP block/PDP and PCL block/PDP pairs in the P2VP-PCL/PDP mixtures. On the basis of the SPM results and FTIR study, a model describing the microstructure of the P2VP-PCL/PDP eutectic mixtures is proposed. The amorphous P2VP blocks are expelled from the ordered eutectic lamellae formed by the crystalline PCL blocks and PDP, which deviates remarkably from the existing structural model proposed by other authors for poly(vinyl pyridine)/PDP and poly(styrene-block-4-vinyl pyridine)/PDP mixtures.  相似文献   

3.
Isotactic polypropylene block copolymers, isotactic-polypropylene-block-poly (methyl methacrylate) (i-PP-b-PMMA) and isotactic-polypropylene-block-polystyrene (i-PP-b-PS), were prepared by atom transfer radical polymerization (ATRP) using a brominated styrene-terminated isotactic polypropylene macroinitiator synthesized from bromination of styrene-terminated isotactic polypropylene. The styrene-terminated isotactic polypropylene can be obtained by polymerization of propylene in the presence of styrene and hydrogen chain transfer agents using a rac-Me2Si[2-methyl-4-(1-naphyl)Ind]2ZrCl2 as catalyst. The molecular weights of isotactic polypropylene block copolymers were controlled by altering the amount of hydrogen used in the polymerization of propylene and the amount of monomer used in the blocking reaction. The effect of i-PP-b-PS block copolymer on PP-PS blends and that of i-PP-b-PMMA block copolymer on PP-PMMA blends were studied by scanning electron microscopy.  相似文献   

4.
Block copolymers have been extensively used in the synthesis of many types of nanoparticles, where generally are considered as stabilizer and protective agent. In this work a double function of the biodegradable triblock copolymer poly(N-vinyl-2-pyrrolidone)-b-poly(ε-caprolactone)-b-poly(N-vinyl-2-pyrrolidone), (PVP-PCL-PVP) in the gold nanoparticle-copolymer synthesis is reported.Gold-copolymer composed nanoparticles were synthesized using the triblock copolymer (PVP-PCL-PVP) and potassium tetrachloro aurate (III), both in aqueous solution. The copolymer work as both, reductant and stabilizer agent. The obtained nanoparticles were characterized by FT-IR, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The shape and the size of the obtained nanoparticles are dependent on the copolymer/salt of gold concentration ratio used in the synthesis.To complement the experimental results about the copolymer role in the nanoparticles synthesis, computational tools were used to characterize the reactivity of the reactant species.  相似文献   

5.
Novel kind of core-shell corona complex micelles were prepared, which enhanced both the hydrolytic stability and the photostability of water-soluble zinc tetrakis(4-sulfonatophenyl) porphyrin (ZnTPPS) in acidic aqueous solutions. The core-shell gold nanoparticles (AuNPS) were synthesized by reducing HAuCl4 and di-thioester terminated block copolymer, poly(Nisopropylacrylamide)-block-poly(4-vinylpyridine) (PNIPAM-b-P4VP). The complex micelles with gold core, P4VP/ZnTPPS shell and PNIPAM corona were formed by simple mixing of gold nanoparticles and ZnTPPS. The photochemical properties of the complex micelles were studied by UV–Visiblespectroscopy and fluorescence spectroscopy. The results showed trapping of ZnTPPS in the positively charged micellar shell that effectively prevented demetallation of the ZnTPPS that would occur in acidic aqueous solutions. Furthermore, with appropriate concentration of gold nanoparticles, ZnTPPS in the complex micelle had excellent photostability by suppression of generation of reactive oxygen species (ROS). The enhanced stability of ZnTPPS in acidic aqueous media could be extensively used for photocatalysis and in solar cells.  相似文献   

6.
Patterned arrays of gold nanoparticles were fabricated using a simple dipping method that makes use of their specific interactions with nano-domains of carboxylic acid on a block copolymer template. Polystyrene-block-poly(tert-butyl acrylate) on the SU-8 photoresist pattern was selectively transformed to polystyrene-block-poly(acrylic acid). Au nanoparticles are selectively immobilized on the resulting carboxylic acid patterns to produce well-defined patterned Au nanoparticle arrays. This stable and robust template can be used to obtain any patterned nonaggregated metal or inorganic nanoparticle arrays.  相似文献   

7.
A new type of stimuli-responsive polymeric (SRP) coating has been prepared for use in open tubular capillary electrochromatography (OT-CEC), by grafting poly(2-dimethylaminoethylmethacrylate)-block-poly(acrylic acid) (PDMAEMA-b-PAA) as a Y-shaped block copolymer with two dissimilar chain compositions onto the inner walls of aminopropyl-modified silica capillaries. The grafting process introduced weakly charged functional groups from the PAA and PDMAEMA, enabling the generation of electroendosmotic flow with magnitude and direction adjustable by changing the pH of the running buffer electrolyte. This stimuli-responsive PDMAEMA-b-PAA block copolymer was found to provide excellent resolution of various acidic and basic compounds, leading to efficient analyte separation. When operated in the OT-CEC mode, separation selectivities could be readily manipulated via differential contributions from chromatographic and electrophoretic mechanisms, simply by changing the pH or the ionic strength of the running buffer electrolyte.  相似文献   

8.
We investigated the thin film morphology of two different asymmetric block copolymers (BCP), polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(n-pentyl methacrylate)-block-poly(methyl methacrylate) (PPMA-b-PMMA), loaded with pre-synthesized iron oxide nanoparticles (NP). The chemical composition of the BCP constituents determines the strength of the interaction between polymer chains and nanoparticles. In the case of NP/PS-b-P4VP system, the nanoparticles interact preferentially with the P4VP block and hence localize selectively in the P4VP cylindrical microdomains. However, for the NP/PPMA-b-PMMA system, the nanoparticles have no significant preference for the copolymer blocks and segregate at the polymer/substrate interface. Interestingly, this changes the effective substrate surface energy and hence leads to a remarkable change in domain orientation from parallel to perpendicular with respect to the substrate. These results clearly demonstrate the importance of both enthalpic and entropic factors which determine spatial distribution of NP in BCP films and influence domain orientation.  相似文献   

9.
A novel micellization induced by photolysis was attained using a poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in dichloromethane by the irradiation with a high-pressure mercury lamp in the presence of photoacid generators, such as bis(alkylphenyl)iodonium hexafluorophosphate (BAI), diphenyliodonium hexafluorophosphate (DPI), and triphenylsulfonium triflate (TPS). The irradiation time to promote the micellization increased in the order of BAI < DPI < TPS, depending on the UV absorption intensity of the photoacid generators. The efficiency to promote the micellization was also dependent on the block length of the copolymer. Under an identical PBSt block length, the copolymer with the shorter PSt block length more easily formed micelles. The 1H NMR analysis confirmed that the PBSt-b-PSt copolymer was converted into poly(4-vinyl phenol)-block-PSt, resulting in micelles by self-assembly.  相似文献   

10.
In this work,a new type of block polymers,polystyrene-b-poly[(N-isopropyl acrylamide)-co-(vinyl benzyl chloride)](PS-b-P(NIPAM-co-VBC)),was prepared via reversible addition fragmentation transfer polymerization,then pentacyano(4-(dimethylamino pyridine))ferrate(Fe-DMAP) was attached to VBC units through a quaternization process.The Fe(Ⅱ)-coordinated PS-b-P[NIPAM-co-(VBC-Fe-DMAP)]block copolymers were characterized by ~1H-NMR,FT-IR and TGA.The self-assembly behavior of the block copolymers was also investigated and the micelle morphology was characterized by TEM.It was found that the PS-b-P(NIPAM-co-VBC) block polymer and Fe-coordinated block copolymer could both form spherical micelles in DMF/MeOH mixed solvent.  相似文献   

11.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

12.
Summary: A novel amphiphilic ABCBA-type pentablock copolymer with properties that are sensitive to temperature and pH, poly(2-dimethylaminoethyl methacrylate)-block-poly(2,2,2-trifluoroethyl methacrylate)-block-poly(ε-caprolactone)-block-poly(2,2,2- trifluoroethyl methacrylate)-block-poly(2-dimethylaminoethyl methacrylate) (PDMAEMA- b-PTFEMA-b-PCL-b-PTFEMA-b-PDMAEMA), was synthesized via consecutive atom transfer radical polymerizations (ATRPs). The copolymers obtained were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectroscopy, respectively. The aggregation behaviors of the pentablock copolymers in aqueous solution with different pH (pH = 4.0, 7.0 and 8.5) were studied. Transmission electron microscopic images revealed that spherical micelles from self-assembly of the pentablock copolymer were prevalent in all cases. The mean diameters of these micelles increased from 34, 46, to 119 nm when the pH of the aqueous solution decreased from 8.5, 7.0, to 4.0, respectively.  相似文献   

13.
景遐斌 《高分子科学》2013,31(6):912-923
To further enhance the transfection efficiency of a micelleplex system based on monomethoxy poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(L-lysine) (MPEG-b-PCL-b-PLL), cholesterol (Chol) moieties are attached to the ε-termini of PLL segments to obtain MPEG-b-PCL-b-PLL/Chol. The structure and morphology of the copolymer are studied by 1H-NMR, TEM and DLS (dynamic light scattering). The cytotoxicity, cell uptake, endosomal release and mRNA knockdown are studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, flow cytometry, CLSM (confocal laser scanning microscopy) and RT-PCR (real-time polymerase chain reaction). The results show that compared to their precursor MPEG-b-PCL-b-PLL, the cholesterol-grafted copolymer shows significantly lower toxicity, more rapid cellular endocytosis and endosome escape, and consequently displays enhanced siRNA transfection efficiency even at a lower N/P ratio. These improvements are ascribed to enhanced interaction of the cholesterol moieties with both cellular membrane and endosomal membrane. Moreover, effect of the PLL block length is examined. The final conclusion is that long enough PLL segments and incorporation of proper fraction of cholesterol onto the PLL segments benefit the enhancement of siRNA transfection efficiency.  相似文献   

14.
Novel multifunctional nanoparticles containing a magnetic Fe3O4@SiO2 sphere and a biocompatible block copolymer poly(ethylene glycol)-b-poly(aspartate) (PEG-b-PAsp) were prepared. The silica coated on the superparamagnetic core was able to achieve a magnetic dispersivity, as well as to protect Fe3O4 against oxidation and acid corrosion. The PAsp block was grafted to the surface of Fe3O4@SiO2 nanoparticles by amido bonds, and the PEG block formed the outermost shell. The anticancer agent doxorubicin (DOX) was loaded into the hybrid nanoparticles via an electrostatic interaction between DOX and PAsp. The release rate of DOX could be adjusted by the pH value.  相似文献   

15.
The blend membranes of polystyrene-block-polyisoprene-block-polystyrene and polyethylene-block-poly(ethylene glycol)-block-polycaprolactone were designed using the phase inversion technique. The poly(methyl methacrylate)-coated gold nanoparticles are around 40–50 nm in size. The honeycomb-shaped nanopores were uniformly dispersed in polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles blend membranes. There was a 16% increase in tensile strength and a 33% increase in tensile modulus of polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone/poly(methyl methacrylate)-coated gold nanoparticles 1 relative to the neat membrane. With 1 wt% nanoparticles, the membrane showed a higher water flux of 59.2 mL cm?2 min?1 and a salt rejection ratio of 25.4%, while the polystyrene-block-polyisoprene-block-polystyrene/polyethylene-block-poly(ethylene glycol)-block-polycaprolactone membrane without poly(methyl methacrylate)-coated gold nanoparticles had lower flux (43.8 mL cm?2 min?1) and salt rejection (18.5%).  相似文献   

16.
Micelle-supported gold composites with a polystyrene core and a poly(4-vinyl pyridine)/Au shell are synthesized using NaBH(4) to reduce a mixture of micelle and HAuCl(4) in acidic aqueous solution (pH approximately 2). The template micelle with a polystyrene core and a poly(4-vinyl pyridine) shell is formed by self-assembly of block copolymer polystyrene-block-poly(4-vinyl pyridine). The gold nanoparticles coated onto the surfaces of the composites possess an average diameter of about 15 nm. The composites are applied to catalyze the reduction of p-nitrophenol in the presence of NaBH(4), and the results indicate that the kinetic constant of the reaction increases when the composite concentration and the reaction temperature increase. In addition, research results also indicate that composites with high content of gold show higher catalytic activity and higher catalytic efficiency.  相似文献   

17.
Block copolymers have been extensively used in the synthesis of many types of nanoparticles, where generally are considered as stabilizer and protective agent. In this work a double function of the biodegradable triblock copolymer poly(N-vinyl-2-pyrrolidone)-b-poly(ε-caprolactone)-b-poly(N-vinyl-2-pyrrolidone), (PVP–PCL–PVP) in the gold nanoparticle-copolymer synthesis is reported.Gold-copolymer composed nanoparticles were synthesized using the triblock copolymer (PVP–PCL–PVP) and potassium tetrachloro aurate (III), both in aqueous solution. The copolymer work as both, reductant and stabilizer agent. The obtained nanoparticles were characterized by FT-IR, dynamic light scattering (DLS), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The shape and the size of the obtained nanoparticles are dependent on the copolymer/salt of gold concentration ratio used in the synthesis.To complement the experimental results about the copolymer role in the nanoparticles synthesis, computational tools were used to characterize the reactivity of the reactant species.  相似文献   

18.
Poly(methyl acrylate)-b-poly(N-vinyl pyrrolidone/maleic anhydride/styrene) (PMA-b-P (NVP/MAH/St)) quaternary amphiphilic block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) was used to improve the anti-hydrolysis and dispersion properties of aluminum nitride (AIN) powders that were modified by copolymers. Its structure was characterized by Fourier transform infrared spectroscopy (FT-IR) and Hydrogen nuclear magnetic spectroscopy (1H-NMR). The results demonstrate that the molecular weight distribution of the quaternary amphiphilic block copolymers is 1.35–1.60, which is characteristic of controlled molecular weight and narrow molecular weight distribution. Through charge transfer complexes, NVP/MAH/St produces a regular alternating arrangement structure. After being treated with micro-crosslinking, AlN powder modified by copolymer PMA-b-P(NVP/MAH/St) exhibits outstanding resistance to hydrolysis and can be stabilized in hot water at 50 °C for more than 14 h, and the agglomeration of powder particles was improved remarkably.  相似文献   

19.
Sodium poly(styrenesulfonate)(polySSNa)-grafted polymer nanoparticles were synthesized by core-cross-linking of block copolymer micelles and subsequent chemical transformation. Block copolymers, poly(p-((1-methyl)silacyclobutyl)styrene-block-poly(neopentyl p-styrenesulfonate)s, polySBS-b-polySSPen, were synthesized by nitroxy-mediated living radical polymerization. The block copolymers formed micelles (Rh=15-23 nm, where Rh represents the hydrodynamic radius) with a polySBS core and polySSPen shell in acetone. The micelle core was cross-linked by ring-opening polymerization of silacyclobutyl groups in polySBS. Hydrolysis of the neopentyl groups provided polySSNa-grafted nanoparticles. The Rh of the particles before the hydrolysis ranged from 12 to 21 nm in acetone, while they varied to the range from 50 to 110 nm in water after the hydrolysis.  相似文献   

20.
Silica nanoparticles (NSiO2) are modified with mixed polymer brushes derived from a block copolymer precursor, poly(methyl methacrylate)-b-poly(glycidyl methacrylate)-b-poly(tert-butyl methacrylate) with short middle segment of PGMA, through one step ??grafting-onto?? approach. The block polymer precursors are prepared via reversible addition?Cfragmentation chain transfer-based polymerization of methyl methacrylate, glycidyl methacrylate, and tert-butyl methacrylate. The grafting is achieved by the reaction of epoxy group in short PGMA segment with silanol functionality of silica. After hydrolysis of poly(tert-butyl methacrylate) segment, amphiphilic NSiO2 with ??V-shaped?? polymer brushes possessing exact 1:1 molar ratio of different arms were prepared. The functionalized particles self-assemble at oil/water interfaces to form stable large droplets with average diameter ranging from 0.15?±?0.06 to 2.6?±?0.75?mm. The amphiphilicity of the particles can be finely tuned by changing the relative lengths of poly(methyl methacrylate) and poly(methacrylic acid) segments, resulting in different assembly behavior. The method may serve as a general way to control the surface property of the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号