首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On property Br     
We improve the lower and upper bounds reported by Herzog and Schönheim for mr(p), the minimum number m such that there exists a family F of m sets, each containing p elements, and F not having property Br.  相似文献   

2.
Given two Banach spaces E, F, let B(E, F) be the set of all bounded linear operators from E into F, and R(E, F) the set of all operators in B(E, F) with finite rank. It is well-known that B(? n ) is a Banach space as well as an algebra, while B(? n , ? m ) for mn, is a Banach space but not an algebra; meanwhile, it is clear that R(E, F) is neither a Banach space nor an algebra. However, in this paper, it is proved that all of them have a common property in geometry and topology, i.e., they are all a union of mutual disjoint path-connected and smooth submanifolds (or hypersurfaces). Let Σ r be the set of all operators of finite rank r in B(E, F) (or B(? n , ? m )). In fact, we have that 1) suppose Σ r B(? n , ? m ), and then Σ r is a smooth and path-connected submanifold of B(? n , ? m ) and dimΣ r = (n + m)r ? r 2, for each r ∈ [0, min{n,m}; if mn, the same conclusion for Σ r and its dimension is valid for each r ∈ [0, min{n, m}]; 2) suppose Σ r B(E, F), and dimF = ∞, and then Σ r is a smooth and path-connected submanifold of B(E, F) with the tangent space T A Σ r = {BB(E, F): BN(A) ? R(A)} at each A ∈ Σ r for 0 ? r ? ∞. The routine methods for seeking a path to connect two operators can hardly apply here. A new method and some fundamental theorems are introduced in this paper, which is development of elementary transformation of matrices in B(? n ), and more adapted and simple than the elementary transformation method. In addition to tensor analysis and application of Thom’s famous result for transversility, these will benefit the study of infinite geometry.  相似文献   

3.
Given two Banach spaces E,F, let B(E,F) be the set of all bounded linear operators from E into F, Σ r the set of all operators of finite rank r in B(E,F), and Σ r # the number of path connected components of Σ r . It is known that Σ r is a smooth Banach submanifold in B(E,F) with given expression of its tangent space at each A ∈ Σ r . In this paper,the equality Σ r # = 1 is proved. Consequently, the following theorem is obtained: for any nonnegative integer r, Σ r is a smooth and path connected Banach submanifold in B(E,F) with the tangent space T A Σ r = {BB(E,F): BN(A) ⊂ R(A)} at each A ∈ Σ r if dim F = ∞. Note that the routine method can hardly be applied here. So in addition to the nice topological and geometric property of Σ r the method presented in this paper is also interesting. As an application of this result, it is proved that if E = ℝ n and F = ℝ m , then Σ r is a smooth and path connected submanifold of B(ℝ n , ℝ m ) and its dimension is dimΣ r = (m+n)rr 2 for each r, 0 <- r < min {n,m}. Supported by the National Science Foundation of China (Grant No.10671049 and 10771101).  相似文献   

4.
We study the approximation of functions from anisotropic Sobolev classes B(Wrp([0,1]d)) and Hölder-Nikolskii classes B(Hrp([0,1]d)) in the Lq([0,1]d) norm with qp in the quantum model of computation. We determine the quantum query complexity of this problem up to logarithmic factors. It shows that the quantum algorithms are significantly better than the classical deterministic or randomized algorithms.  相似文献   

5.
《Discrete Mathematics》2004,274(1-3):125-135
The classical Ramsey number r(m,n) can be defined as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, β(B)⩾m or β(R)⩾n, where β(G) denotes the independence number of a graph G. We define the upper domination Ramsey number u(m,n) as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or Γ(R)⩾n, where Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. The mixed domination Ramsey number v(m,n) is defined to be the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or β(R)⩾n. Since β(G)⩽Γ(G) for every graph G, u(m,n)⩽v(m,n)⩽r(m,n). We develop techniques to obtain upper bounds for upper domination Ramsey numbers of the form u(3,n) and mixed domination Ramsey numbers of the form v(3,n). We show that u(3,3)=v(3,3)=6, u(3,4)=8, v(3,4)=9, u(3,5)=v(3,5)=12 and u(3,6)=v(3,6)=15.  相似文献   

6.
In this paper, we study the Bloch group B2(F2[ε]) over the ring of dual numbers of the algebraic closure of the field with p elements, for a prime p?5. We show that a slight modification of Kontsevich?s -logarithm defines a function on B2(F2[ε]). Using this function and the characteristic p version of the additive dilogarithm function that we previously defined, we determine the structure of the infinitesimal part of B2(F2[ε]) completely. This enables us to define invariants on the group of deformations of Aomoto dilogarithms and determine its structure. This final result might be viewed as the analog of Hilbert?s third problem in characteristic p.  相似文献   

7.
In this paper, we have found upper and lower bounds for the spectral norms of r-circulant matrices in the forms A = Cr(F0, F1, …, Fn−1), B = Cr(L0, L1, …, Ln−1), and we have obtained some bounds for the spectral norms of Kronecker and Hadamard products of A and B matrices.  相似文献   

8.
Let F be a closed face of the weak1 compact convex state space of a unital C1-algebra A. The author has already shown that F is a Choquet simplex if and only if pφFπφ(A)″pφF is abelian for any φ in F with associated cyclic representation (Hφ,πφ,ξφ), where pφF is the orthogonal projection of Hφ onto the subspace spanned by vectors η defining vector states a → 〈πφ(a)η, η)〉 lying in F. It is shown here that if B is a C1-subalgebra of A containing the unit and such that ξφ is cyclic in Hφ for πφ(B) for any φ in F, then the boundary measures on F are subcentral as measures on the state space of B if and only if pφF(πφ(A), πφ(B)′)″pφF is abelian for all φ in F. If A is separable, this is equivalent to the condition that any state in F with (πφ(A)′ ∩ πφ(B)″) one-dimensional is pure. Taking A to be the crossed product of a discrete C1-dynamical system (B, G, α), these results generalise known criteria for the system to be G-central.  相似文献   

9.
Let m(n,k,r,t) be the maximum size of satisfying |F1∩?∩Fr|≥t for all F1,…,FrF. We prove that for every p∈(0,1) there is some r0 such that, for all r>r0 and all t with 1≤t≤⌊(p1−rp)/(1−p)⌋−r, there exists n0 so that if n>n0 and p=k/n, then . The upper bound for t is tight for fixed p and r.  相似文献   

10.
Let Mn(F) be the algebra of n×n matrices over a field F, and let AMn(F) have characteristic polynomial c(x)=p1(x)p2(x)?pr(x) where p1(x),…,pr(x) are distinct and irreducible in F[x]. Let X be a subalgebra of Mn(F) containing A. Under a mild hypothesis on the pi(x), we find a necessary and sufficient condition for X to be Mn(F).  相似文献   

11.
Assume X is an infinite dimensional F-normed space and let r be a positive number such that the closed ball Br(X) of radius r is properly contained in X. The main aim of this paper is to give examples of regular F-normed ideal spaces in which there is a 1-ball or a (1+ε)-ball contractive retraction of Br(X) onto its boundary with positive lower Hausdorff measure of noncompactness. The examples are based on the abstract results of the paper, obtained under suitable hypotheses on X.  相似文献   

12.
Let p≥2 be an integer and T be an edge-weighted tree. A cut on an edge of T is a splitting of the edge at some point on it. A p-edge-partition of T is a set of p subtrees induced by p−1 cuts. Given p and T, the max-min continuous tree edge-partition problem is to find a p-edge-partition that maximizes the length of the smallest subtree; and the min-max continuous tree edge-partition problem is to find a p-edge-partition that minimizes the length of the largest subtree. In this paper, O(n2)-time algorithms are proposed for these two problems, improving the previous upper bounds by a factor of log (min{p,n}). Along the way, we solve a problem, named the ratio search problem. Given a positive integer m, a (non-ordered) set B of n non-negative real numbers, a real valued non-increasing function F, and a real number t, the problem is to find the largest number z in {b/a|a∈[1,m],bB} such that F(z)≥t. We give an O(n+tF×(logn+logm))-time algorithm for this problem, where tF is the time required to evaluate the function value F(z) for any real number z.  相似文献   

13.
The main result of this paper characterizes generalizationsof Zolotarev polynomials as extremal functions in the Kolmogorov–Landauproblem

whereω(t) is a concave modulus of continuity,r, m: 1mr,are integers, andBB0(r, m, ω). We show that theextremal functionsZBhaver+1 points of alternance andthe full modulus of continuity ofZ(r)B: ω(Z(r)B; t)=ω(t) for allt[0, 1]. This generalizesthe Karlin's result on the extremality of classical Zolotarevpolynomials in the problem () forω(t)=tand allBBr.  相似文献   

14.
Consider a matroid M=(E,B), where B denotes the family of bases of M, and assign a color c(e) to every element eE (the same color can go to more than one element). The palette of a subset F of E, denoted by c(F), is the image of F under c. Assume also that colors have prices (in the form of a function π(?), where ? is the label of a color), and define the chromatic price as: π(F)=∑?∈c(F)π(?). We consider the following problem: find a base BB such that π(B) is minimum. We show that the greedy algorithm delivers a lnr(M)-approximation of the unknown optimal value, where r(M) is the rank of matroid M. By means of a reduction from SETCOVER, we prove that the lnr(M) ratio cannot be further improved, even in the special case of partition matroids, unless . The results apply to the special case where M is a graphic matroid and where the prices π(?) are restricted to be all equal. This special case was previously known as the minimum label spanning tree (MLST) problem. For the MLST, our results improve over the ln(n-1)+1 ratio achieved by Wan, Chen and Xu in 2002. Inspired by the generality of our results, we study the approximability of coloring problems with different objective function π(F), where F is a common independent set on matroids M1,…,Mk and, more generally, to independent systems characterized by the k-for-1 property.  相似文献   

15.
Let Fm×nq denote the vector space of all m×n matrices over the finite field Fq of order q, and let B=(A1,A2,…,Amn) denote an ordered basis for Fm×nq. If the rank of Ai is ri,i=1,2,…,mn, then B is said to have rank (r1,r2,…,rmn), and the number of ordered bases of Fmxnq with rank (r1,r2,…,rmn is denoted by Nq(r1, r2,…,rmn). This paper determines formulas for the numbers Nq(r1,r2,…,rmn) for the case m=n=2, q arbitrary, and while some of the techniques of the paper extend to arbitrary m and n, the general formulas for the numbers Nq(r1,r2,…,rmn) seem quite complicated and remain unknown. An idea on a possible computer attack which may be feasible for low values of m and n is also discussed.  相似文献   

16.
Let E,F be two Banach spaces,B(E,F),B+(E,F),Φ(E,F),SΦ(E,F) and R(E,F) be bounded linear,double splitting,Fredholm,semi-Frdholm and finite rank operators from E into F,respectively. Let Σ be any one of the following sets:{T ∈Φ(E,F):Index T=constant and dim N(T)=constant},{T ∈ SΦ(E,F):either dim N(T)=constant< ∞ or codim R(T)=constant< ∞} and {T ∈ R(E,F):Rank T=constant< ∞}. Then it is known that Σ is a smooth submanifold of B(E,F) with the tangent space TAΣ={B ∈ B(E,F):BN(A)-R(A) } for any A ∈Σ. However,for ...  相似文献   

17.
LetW p (r) ={f:fC r?1[0, 1],f (r?1) abs.cont., ∥f (r) p <∞}, and setB p (r) ={f:fW p (r) ,∥f (r) p ≤1}. We find the exact Kolmogorov, Gel'fand, linear, and Bernsteinn-widths ofB p (r) inL p for allp∈(1, ∞). For the Kolmogorovn-width we show that forn≥r there exists an optimal subspace of splines of degreer?1 withn?r fixed simple knots depending onp.  相似文献   

18.
We consider the space Ext r (A,B) = Ext KG r (A, B), where G = SL(2, q), q = p n , K is an algebraically closed field of characteristic p, A and B are irreducible KG-modules, and r ? 1. Carlson [6] described a basis of Ext r (A, B) in arithmetical terms. However, there are certain difficulties concerning the dimension of such a space. In the present article, we find the dimension of Ext r (A, B) for r = 1, 2 (in the above-mentioned article, Carlson presents the corresponding assertions without proofs; moreover, there are errors in their formulations). As a corollary, we find the dimension of the space H r (G, A), where A is an irreducible KG-module. This result can be used in studying nonsplit extensions of L 2(q).  相似文献   

19.
For the finite field Fp one may consider the distance between r1(n) and r2(n), where r1, r2 are rational functions in Fp(x). We study the effect to such distances by applying all possible permutations to the elements.  相似文献   

20.
We consider weak solutions to the nonlinear boundary value problem (r, (x, u(x)) u′(x))′ = (Fu)′(x) with r(0, u(0)) u′(0) = ku(0), r(L, u(L)) u′(L) = hu(L) and k, h are suitable elements of [0, ∞]. In addition to studying some new boundary conditions, we also relax the constraints on r(x, u) and (Fu)(x). r(x, u) > 0 may have a countable set of jump discontinuities in u and r(x, u)?1?Lq((0, L) × (0, p)). F is an operator from a suitable set of functions to a subset of Lp(0, L) which have nonnegative values. F includes, among others, examples of the form (Fu)(x) = (1 ? H(x ? x0)) u(x0), (Fu)(x) = ∫xLf(y, u(y)) dy where f(y, u) may have a countable set of jump discontinuities in u or F may be chosen so that (Fu)′(x) = ? g(x, u(x)) u′(x) ? q(x) u(x) ? f(x, u(x)) where q is a distributional derivative of an L2(0, L) function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号