首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A bacteriocin-producing strain (9,000 AU/ml) was isolated from the rhizosphere of Algerian healthy plants Ononis angustissima Lam. and identified as Bacillus clausii strain GM17. The bacteriocin, called Bac-GM17, was purified from the culture supernatant after heat treatment, ammonium sulfate precipitation, Sephadex G-50 chromatography and Mono Q fast-performance liquid chromatography (FPLC). Based on matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, the purified Bac-GM17 is a monomer protein with a molecular mass of 5,158.11 Da. The N-terminal sequencing allowed for the straightforward identification of its first 20 residues, which were of pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely DWTCSKWSCLVCDDCSVELT, which suggests the identification of a novel compound. Bac-GM17 was extremely heat stable (20 min at 120 °C) and was stable within the pH range (3–9). It was found to be resistant to the proteolytic action of trypsin, pepsin, papain, pronase E, and proteinase K. It was also noted to display a bactericidal mode of action against Agrobacterium tumefaciens C58 and a fungistatic mode of action against Candida tropicalis R2 CIP203.  相似文献   

2.
Lysine-rich peptide, designated as KABT-AMP, was designed and synthesized to supersede the irrational use of chemical antibiotics as standard therapy. KABT-AMP is a 22-amino acid helical cationic peptide (+10) and amphipathic in nature. The antimicrobial kinetics of the peptide was ascertained in the representative strains of gram-positive, gram-negative, and fungal strains, viz., Staphylococcus aureus MTCC 2940, Escherichia coli MTCC 2939, and Candida albicans MTCC 227, respectively. KABT-AMP was synthesized by solid-phase synthesis and purified using reverse-phase high-performance liquid chromatography which resulted in >95 % purity, and matrix-assisted laser desorption/ionization time of flight revealed the mass of the peptide to be 2.8 kDa. KABT-AMP showed significant broad-spectrum antimicrobial activity against the bacterial and fungal strains analyzed in the present study with survivability of 30.8, 30.6, and 31.7 % in E. coli, S. aureus, and C. albicans, respectively, at 6 h. KABT-AMP also demonstrated antibiofilm activity against the tested biofilm forming clinical isolate, Candida tropicalis. The putative membranolytic activity of the peptide was substantiated by electron microscopic analysis. Results reveal that KABT-AMP will exhibit noteworthy antimicrobial activity against multidrug-resistant bacteria and fungus at micromolar concentrations with minimal cytotoxicity and thus could be conceived for biomedical application.  相似文献   

3.
Organic salts of bismuth are currently used as antimicrobial agents against Helicobacter pylori. This study evaluated the antibacterial effect of elemental bismuth nanoparticles (Bi NPs) using a serial agar dilution method for the first time against different clinical isolates and a standard strain of H. pylori. The Bi NPs were biologically prepared and purified by a recently described method and subjected to further characterization by infrared spectroscopy and anti-H. pylori evaluation. Infrared spectroscopy results showed the presence of carboxyl functional groups on the surface of biogenic Bi NPs. These biogenic nanoparticles showed good antibacterial activity against all tested H. pylori strains. The resulting MICs varied between 60 and 100 μg/ml for clinical isolates of H. pylori and H. pylori (ATCC 26695). The antibacterial effect of bismuth ions was also tested against all test strains. The antimicrobial effect of Bi ions was lower than antimicrobial effect of bismuth in the form of elemental NPs. The effect of Bi NPs on metabolomic footprinting of H. pylori was further evaluated by 1H NMR spectroscopy. Exposure of H. pylori to an inhibitory concentration of Bi NPs (100 μg/ml) led to release of some metabolites such as acetate, formic acid, glutamate, valine, glycine, and uracil from bacteria into their supernatant. These findings confirm that these nanoparticles interfere with Krebs cycle, nucleotide, and amino acid metabolism and shows anti-H. pylori activity.  相似文献   

4.
Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the food industry.  相似文献   

5.
Novel benzimidazol‐2‐ylidene carbene complexes of Ag(I) were prepared by interaction of the corresponding benzimidazolium salt with Ag2O in dichloromethane. Their structures were characterized by elemental analyses, 1H‐NMR, 13C‐NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 29213), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853) and the fungi Candida albicans and Candida tropicalis. The new complexes were found to be effective antimicrobial activity against a series of bacteria and fungi. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of ?34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.  相似文献   

7.
Kombucha is a traditional beverage of sweetened black tea fermented with a symbiotic association of acetic acid bacteria and yeasts. In this study, kombucha fermented beverage (KFB) appeared to include nine chemical groups (alcohols, acids, lactones, condensed heterocyclic compounds, antibiotics, esters, aldehydes, fatty acids, and alkaloids) of many bioactive metabolites, as elucidated by gas chromatography–mass spectrometry (GC-MS) and IR spectra. The fermented metabolic components of KFB seem collectively to act in a synergistic action giving rise to the antimicrobial activity. Four types of kombucha preparations (fermented, neutralized, heat-treated and unfermented) were demonstrated with respect to their antimicrobial activity against some pathogenic bacterial and fungal strains using agar well diffusion assay. KFB exerted the strongest antimicrobial activities when compared with neutralized and heat-treated kombucha beverages (NKB and HKB). Staphylococcus aureus ATCC6538 (S. aureus) and Escherichia coli ATCC11229 (E. coli) were the organisms most susceptible to the antimicrobial activity of kombucha beverage preparations. Finally, the KFB preparation showed remarkable inhibitory activity against S. aureus and E. coli bacteria in a brain heart infusion broth and in some Egyptian fruit juices (apple, guava, strawberry, and tomato). These data reveal that kombucha is not only a prophylactic agent, but also appears to be promising as a safe alternative biopreservative, offering protection against pathogenic bacteria and fungi.  相似文献   

8.
In this study, the antibacterial activity of disesquiterpene coumarin and sesquiterpene coumarins obtained from Ferula pseudalliacea roots was evaluated by determination of minimum inhibitory concentration using the broth micro-dilution method against seven pathogenic bacterial strains (Staphylococcus aureus ATCC 25,923, vancomycin resistant clinical strain of Enterococcus faecium, Bacillus cereus PTCC 1015, Escherichia coli ATCC 25,922, Pseudomonas aeruginosa PTCC 1430, clinical strain of Klebsiella pneumoniae and a clinical strain of Helicobacter pylori). The overall inhibitory activities of the compounds were higher against Gram positive tested bacteria. Sanandajin and ethyl galbanate demonstrated significant activity against H. pylori strain, as well as S. aureus strain in concentration of 64 μg/ml. Methyl galbanate inhibited vancomycin resistant strain of E. faecium in concentration of 64 μg/ml. The results of the present investigation indicated that disesquiterpene and sesquiterpene coumarins isolated from F. pseudalliacea root extract can be considered as potent antibacterial agents for pharmaceutical and food industries.  相似文献   

9.
In this study, silver nanoparticles (Ag-NPs) have been synthesized using extract of Chelidonium majus root in aqueous solution at room temperature. The root extract was able to reduce Ag+ to Ag0 and stabilized the nanoparticles Different physico-chemical techniques including UV–Vis spectroscopy, transmission electron microscopy and powder X-ray diffraction (PXRD) were used for the characterization of the biosynthesized Ag-NPs obtained. The surface plasmon resonance band appeared at 431 nm is an evidence for formation of Ag-NPs. TEM imaging revealed that the synthesized Ag-NPs have an average diameter of around 15 nm and with spherical shape. Moreover the crystalline structure of synthesized nanoparticles was confirmed using XRD pattern. Furthermore antimicrobial activities of synthesized Ag-NPs were evaluated against Escherichia coli -ATCC 25922 and Pseudomonas aeruginosa ATCC 2785 bacteria strain.  相似文献   

10.
Microbial fermentation using methylotrophic bacteria is one of the most promising methods for l-serine production. Here we describe the metabolic engineering of a Methylobacterium strain to increase the production of l-serine. The glyA gene, encoding serine hydroxymethyltransferase (SHMT), was isolated from the genomic DNA of Methylobacterium sp. MB200, using a DNA fragment encoding Methylobacterium extorquens AM1 SHMT as a probe, and inserted into the vector pLAFR3. The resulting construct was transformed into Methylobacterium sp. MB200 using triparental mating. The genetic-engineered strain, designated as Methylobacterium sp. MB202, was shown to produce 11.4?±?0.6 mg/ml serine in resting cell reactions from 30 mg/ml wet cells, 20 mg/ml glycine, and 70 mg/ml methanol in 2 days, representing a 4.4-fold increase from that of the wild strain. The results demonstrated the potential for improving l-serine production by manipulating the glyA in bacteria and should facilitate the production of l-serine using Methylobacterium sp. strains.  相似文献   

11.
In the present study we report the use of cells of a Haloarchaeon for the green synthesis of silver nanoparticles. Biosynthesis of AgNPs occurred within 30 s on exposure of cells of Haloferax alexandrinus to silver nitrate in direct sunlight. Maximum AgNPs production was achieved within 4 min of exposure of silver nitrate (0.05 %) to cells (5 mg/ml), at pH 7, at ambient day temperature (26–34 °C). The AgNPs had characteristic surface plasmon resonance at 420 nm in UV–Vis spectra. Spherical and irregular crystals ranging from 2 to 60 nm in size with an average size of 18 nm were observed in TEM analysis. The FTIR spectral analysis indicated involvement of N–H, –OH, C=O, C–O functional groups present in cells of Haloferax alexandrinus MTCC 3265. The biogenic AgNPs exhibited broad spectrum antimicrobial activity against human and mammalian pathogens, in the order of Pseudomonas aeruginosa ATCC 9027 > Bordetella bronchiseptica ATCC 4617 > Bacillus subtilis ATCC 6633 > Staphylococcus aureus ATCC 6538P > Staphylococcus epidermidis ATCC 12228 > Escherichia coli ATCC 8739 > Salmonella typhimurium ATCC 14028.  相似文献   

12.
The study details the investigations on the ability of Lactobacillus plantarum CFR 2194, an isolate from kanjika, a rice-based ayurvedic fermented product, to produce biosurfactant. Surfactant production, as a function of fermentation time, indicates that the maximum production occurred at 72 h under stationary conditions. Isolation, partial purification, and characterization of the biosurfactant produced have been carried out, and Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that biosurfactants were constituted by protein and polysaccharide fractions, i.e., possessed the structure typical of glycoprotein, which is affected by the medium composition and the phase of growth of the biosurfactant-synthesizing strain. Critical micelle concentration (cmc) of the biosurfactant was found to be 6 g l?1. The emulsification index (EI), emulsification activity (EA), and emulsion stability (ES) values of the biosurfactant have confirmed its emulsification property. Aqueous fractions of the produced biosurfactant exhibited a significant antimicrobial activity against the food-borne pathogenic species: Escherichia coli ATCC 31705, E. coli MTCC 108, Salmonella typhi, Yersinia enterocolitica MTCC 859, and Staphylococcus aureus F 722. More importantly, the biosurfactant from L. plantarum showed antiadhesive property against above food-borne pathogens. The results thus indicate the potential for developing strategies to prevent microbial colonization of food contact surfaces and health-care prosthesis using these biosurfactants.  相似文献   

13.
Streptomyces sp. isolate ERI-26 was obtained from the Nilgiris forest soil of Western Ghats, Tamil Nadu, India. Novel anthraquinone compound was isolated from the active fraction 5; it was identified by spectroscopical data using UV, IR, NMR and MASS. The isolated compound 1,5,7-trihydroxy-3-hydroxy methyl anthraquinone was tested against bacteria and fungi at minimum inhibitory concentration level. The compound showed significant antimicrobial activity against bacteria, Staphylococcus aureus at 125 μg/ml, Staphylococcus epidermidis at 62.5 μg/m, Bacillus subtilis at 31.25 μg/ml, fungi; Epidermophyton floccosum at 62.5 μg/ml, Aspergillus niger at 31.25 μg/ml, Aspergiller flavus at 31.25 μg/ml, Trichophyton rubrum at 62.5 μg/ml and Botrytis cinerea at 62.5 μg/ml. The isolated compound was subjected to molecular docking studies for the inhibition of TtgR, topoisomerase IV and AmpC β-lactamase enzymes which are targets for antimicrobials. Docking studies of the compound showed low docking energy indicating its usefulness as antimicrobial agent. 1,5,7-Trihydroxy-3-hydroxy methyl anthraquinone is new, and its antimicrobial and molecular docking properties are reported for the first time. Graphical Abstract
?  相似文献   

14.
To improve the rehydration ability of bacterial cellulose (BC), many macromolecules have been used as modifiers in previous reports. However, the aggregation of additives in the BC matrix appears to be inevitable. We investigated different parts of a BC pellicle, which was achieved by in situ modification with carboxymethyl cellulose (CMC) in culture with Gluconacetobacter xylinus ATCC53582 or Enterobacter sp. FY-07. We observed a concentration gradient of CMC in the BC pellicle from G. xylinus ATCC53582, but not with Enterobacter sp. FY-07. Low concentrations of CMC (0.01 %, m/v) are sufficient to modify BC in situ in culture with Enterobacter sp. FY-07, in which CMC could sufficiently contact with the newly formed BC. The crystallinity of the modified BC decreased by more than 39.8 %, and its rehydration ability and water holding capacity increased by 43.3 and 31.0 %, respectively. Unlike the pellicle of modified BC achieved from obligate aerobes, such as G. xylinus ATCC53582, that produced by Enterobacter sp. FY-07 exhibited better homogeneity and porosity.  相似文献   

15.
The aims of this study were to purify and characterize a bacteriocin produced by a strain of Enterococcus faecalis TG2 and to test the safety of the strain. In this work, the active peptide was purified through precipitation with 70% saturated ammonium sulfate, cation-exchange chromatography, and gel filtration. The specific activity of purified bacteriocin was 30,073.42 AU/mg of protein, which corresponded to a 33.34-fold increase. The molecular mass of the purified bacteriocin was 6.3362 kDa determined by LC-MS/MS. The ten amino acid of N-terminal was MTRSKKLNLR and the ten amino acid of C-terminal was ATGGAAGWKS. The activity of the bacteriocin was unaffected by pH 2–10 and thermostable but was sensitive to proteolytic enzymes. The antimicrobial activity of the bacteriocin was not affected by metal ions. Tween-20, Tween-80, Triton X-100, and EDTA did not affect the bacteriocin activity and SDS was able to increase the activity of bacteriocin. Bacteriocin activity was not lost after treatment by < 8% NaCl. Inhibitory spectrum of the bacteriocin showed a wide range of activities against other lactic acid bacteria, food-spoilage, and food-borne pathogens. Ent. faecalis TG2 was sensitive to tetracycline and erythromycin but resistant to ampicillin, gentamicin, kanamycin, and chloramphenicol. Results from PCR indicated that Ent. faecalis TG2 did not harbor any virulence genes. The study suggests that Ent. faecalis TG2 and its bacteriocin might be used as bio-preservatives in food products.  相似文献   

16.
The increase of multidrug-resistant pathogens and the restriction on the use antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are small antimicrobial peptides produced by numerous bacteria. Much interest has been focused on bacteriocins because they exhibit inhibitory activity against pathogens. Lactic acid bacteria possess the ability to synthesize antimicrobial compounds (like bacteriocin) during their growth. In this study, an antibacterial substance (bacteriocin PJ4) produced by Lactobacillus helveticus PJ4, isolated from rat gut microflora, was identified as bacteriocin. It was effective against wide assay of both Gram-positive and Gram-negative bacteria involved in various diseases, including Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. The antimicrobial peptide was relatively heat-resistant and also active over a wide pH range of 2–10. It has been partially purified to homogeneity using ammonium sulfate precipitation and size exclusion chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis of bacteriocin PJ4 purified through size exclusion chromatography resolved ~6.5 kDa protein with bacteriocin activity. The peptide is inactivated by proteolytic enzymes, trypsin, and lipase but not when treated with catalase, α-amylase, and pepsin. It showed a bactericidal mode of action against the indicator strains E. coli MTCC443, Lactobacillus casei MTCC1423, and E. faecalis DT48. Such characteristics indicate that this bacteriocin may be a potential candidate for alternative agents to control important pathogens.  相似文献   

17.
In the search for an efficient producer of tannase, Penicillium sp. EZ-ZH190 was subjected to mutagenesis using heat treatment and strain EZ-ZH290 was isolated. The maximum tannase in this mutant strain was 4.32 U/mL with an incubation period of 84 h as compared to wild strain EZ-ZH190 where the incubation period was 96 h with a maximum enzyme activity of 4.33 U/mL. Also, the Penicillium sp. EZ-ZH290 tannase had a maximum activity at 40 °C and pH 5.5. Then, the spores of strain EZ-ZH290 were subjected to γ irradiation mutagenesis and strain EZ-ZH390 was isolated. Strain EZ-ZH390 exhibited higher tannase activity (7.66 U/mL) than the parent strain EZ-ZH290. It was also found that Penicillium sp. EZ-ZH390 tannase had an optimum activity at 35 °C and a broad pH profile with an optimum at pH 5.5. The tannase pH stability of Penicillium sp. EZ-ZH390 and its maximum production of tannase followed the same trend for five generations confirming the occurrence of stable mutant. This paper is shown that γ irradiation can mutate the Penicillium sp. leading to increase the tannase production.  相似文献   

18.
Aromatic halophytes represent an exceptional source of natural bioactive compounds for the food industry. Crithmum maritimum L., also known as sea fennel, is a halophyte plant colonizing cliffs and coastal dunes along Mediterranean and Atlantic coasts. It is well known to produce essential oils and polyphenols endowed with antioxidant and biological effects. The present work reports the phytochemical profile, as well as antioxidant, antimicrobial and antimutagenic properties of C. maritimum leaf hydro-alcoholic extract. From LC-ESI-MS analysis, eighteen phenolic compounds were depicted in sea fennel extract and the amount of total phenolic content exceeds 3% DW. Accordingly, C. maritimum extract showed strong antioxidant activities, as evidenced by in vitro (DPPH, ORAC, FRAP) and ex vivo (CAA-RBC and hemolysis) assays. An important antimicrobial activity against pathogenic strains was found as well as a strong capacity to inhibit Staphylococcus aureus (ATCC 35556) biofilm formation. Sea fennel extracts showed a significant decrease of mutagenesis induced by hydrogen peroxide (H2O2) and menadione (ME) in Saccharomyces cerevisiae D7 strain. In conclusion, our results show that C. maritimum is an exceptional source of bioactive components and exert beneficial effects against oxidative or mutagenic mechanisms, and pathogenic bacteria, making it a potential functional food.  相似文献   

19.
Essential oils from the leaves, twigs and barks of Bocageopsis pleiosperma Maas were obtained by using hydrodistillation and analysed by using gas chromatography coupled to mass spectrometry. Several compounds (51) were detected and identified, being β-bisabolene the main component in all aerial parts of the plant, with higher concentration in the leaves (55.77%), followed by barks (38.53%) and twigs (34.37%). In order to increase the biological knowledge about the essential oil of Bocageopsis species, antimicrobial activities were evaluated against the microorganisms Escherichia coli, Staphylococcus epidermidis, Enterobacter aerogenes, Candida tropicalis, Candida dubliniensis, Candida glabrata and Candida albicans. The essential oil obtained from the barks exhibited a moderate effect against S. epidermidis ATCC 1228 (MIC = 250 μg/mL), while the other oils did not exhibit antimicrobial activity. These results represent the first report about the chemical composition of B. pleiosperma and the first antimicrobial evaluation with a Bocageopsis species.  相似文献   

20.
Bacteriocins are low molecular peptides with antimicrobial activity, which are of great interest as food bio-preservatives and for treating diseases caused by pathogenic bacteria. In this study, we present the characterization of bacteriocins produced by Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Bacteriocins were purified through ammonium sulfate precipitation and double dialysis by using 12- and 1-kDa membranes. Bacteriocins showed activity against Listeria innocua, Listeria monocytogenes, and Enteroccocus faecalis. Molecular weight was estimated through Tricine-SDS-PAGE and overloading the gel onto Mueller-Hinton agar seeded with L. monocytogenes, showing an inhibition zone between 5 and 10 kDa. NanoLC-MS/MS analysis allowed the identification of UPF0291 protein (UniProtKB/Swiss-Prot Q88VI7), which is also presented in other lactic acid bacteria without assigned function. Ab initio modeling showed it has an α-helix-rich structure and a large positive-charged region. Bacteriocins were stable between 4 and 121 °C and pH 2 and 12, and the activity was inhibited by SDS and proteases. Mode of action assay suggests that the bacteriocin causes of target microorganism. Taken together, these results describe a possible new class IIa bacteriocin produced by L. plantarum, which has a wide stability to physicochemical conditions, and that could be used as an alternative for the control of foodborne diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号