首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Generation of charged current carriers in photovoltaic cells with polymeric p-n heterostructures as an active layer was studied. Photo- and thermofield stimulation of Pool-Frenkel type states at the p-n interface of polymeric heterostructures based on p (doped polyimides) and n type (doped carbazolyl-containing polymers and polyesteramides) was found to cause the generation of current carriers and observation of photostimulated currents. These states are interpreted as stabilized pairs of charges consisting of carriers captured by deep charged centers with the opposite sign. They are presumably formed at the interface as a result of an irreversible photochemical reaction of the free radical type of a radical-ion pair, which appears in the phototransfer of an electron from a donor polyimide fragment to an excited dopant particle. The effectiveness of the formation and accumulation of these states was found to increase as the surface area and the degree of interface development (sharp, diffuse, volume) grew. Photostimulated currents were shown to influence the photovoltaic characteristics of cells based on polymeric p-n heterostructures: an increase in short circuit photocurrent (by more than an order of magnitude for a volume interface and by several times for a diffusion interface) was observed, and free running voltage increased (to 1.2–1.4 V). This allows the energy effectiveness of photovoltaic cells to be substantially increased at a moderate increase in temperature (by no more than 20–30°C), in particular, because of nonactinic light source IR radiation. The formation of ion-radical pairs and their relation to Pool-Frenkel states is substantiated by observed positive magnetic field influence (H < 1 kOe, T = 293−323 K) on the yield of luminescence of dopant particles and photostimulated current (magnetic spin effects by the hyperfine interaction mechanism).  相似文献   

2.
The effect of iodine doping on the photoconduction behaviour of pristine and 75 MeV oxygen ion-irradiated (fluence: 3.12×1012 ions/cm2) kapton-H polyimide film in the visible region has been investigated for different doping hours at various operating temperatures ranging 40–250°C and at different electric fields (40–400 kV/cm). The formation of charge transfer complexes in polymers effectively decreases the trapping sites by handling the charge carriers. A decrease in the photocurrent in ion-irradiated samples at higher exposure time for iodine vapours as compared with pristine samples has been associated with the enhancement in the trapping sites which may deplete the charge carriers and a loss in the photoactive groups owing to radiation-induced demerisation. The evidence of Frankel-type conduction (based on the estimation of Schottky coefficients) mechanism in irradiated samples is observed. A strong dependence of photocurrent on temperature in doped pristine and ion-irradiated samples reconfirms the thermal ionisation process of exciton for photogeneration of charge carriers.  相似文献   

3.
Zinc oxide carbon nanotube (ZnO-CNTs) thin films were prepared by a chemical bath deposition (CBD) method and immersed in N719 dye for 24 h. The structure and surface morphology of the samples was captured by X-ray diffraction (XRD) and field effect scanning electron microscopy (FESEM) unit, respectively. The photovoltaic properties of ZnO- and ZnO-CNT-based dye-sensitized solar cells (DSSCs) were measured by considering the power conversion efficiency (η), photocurrent density (J sc), open-circuit voltage (V oc), and fill factor (FF). The cell's efficiency doped with single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) reached 0.65 and 0.28 %, respectively. ZnO-based DSSC generated only η?=?0.003 %. The electrochemical impedance spectroscopy (EIS) unit was employed to investigate the electron transport properties such as effective electron lifetime (τ eff), effective electron chemical diffusion coefficient (D eff), and effective electron diffusion length (L n ). The addition of CNTs has enhanced the photovoltaic properties of the DSSCs and reduced the recombination effect inside the solar cell.  相似文献   

4.
《Current Applied Physics》2020,20(3):445-450
We discussed photocurrent spectra of photovoltaic PbS infrared detectors using multi-layer graphene as transparent electrode, where p-PbS films were deposited on TiO2/FTO substrates by chemical bath deposition. In the photocurrent spectra, we observed both above-bandgap and sub-bandgap photocurrent without any external bias. We discussed impurity band model and grain boundary model in order to explain the sub-bandgap photocurrent near 15 μm. Since FTO is transparent in the visible range, we were able to illuminate green laser beam from the FTO back-side, and photo-response up to 50 μm was found to be enhanced. This long wavelength photo-response was attributed to the excitation of the photo-electrons accumulated at the TiO2/PbS interface. Our photovoltaic PbS devices can detect not only short-infrared but also terahertz radiation at room temperature, which is highly applicable to various fields.  相似文献   

5.
The electronic-absorption and luminescence spectra and the kinetics of relaxation of photocurrent in GaSe single crystals and thin films doped with boron atoms are experimentally investigated. Crystals are doped either in the course of synthesis or upon growing single crystals by the Bridgman method. Thin GaSe films are obtained by thermal evaporation of the compound preliminarily doped with boron. An absorption band with the maximum at λ = 925 nm, which is attributed to boron contaminations, is revealed from the comparison of the electronic-absorption spectra of a GaSe crystal and thin films doped with boron. When the crystals are excited with Nd:YAG laser pulses of a duration of 12 ns, it is established that recombination of nonequilibrium current carriers in pure crystals occurs through rapid and slow recombination channels and in crystals doped with boron only through rapid channels. In the region near λ = 932 nm, photoluminescence is observed in the crystals doped with boron, and its half-bandwidth is 15 Å.  相似文献   

6.
Photosensitive In-n +-CdS-n-CdS x Te1 ? x -p-Zn x Cd1 ? x Te-Mo film structures based on II–VI semiconductors and operating in the wavelength range λ = 0.490–0.855 μm have been fabricated. These structures in the forward current direction at high bias voltages operate as injection photodiodes and exhibit a high integrated sensitivity S int ≈ 700 A/lm (14500 A/W) at room temperature. It has been found that, in the fabricated structures at low illuminance levels and low forward bias voltages (0.05–0.50 V), the diffusion and drift fluxes of nonequilibrium charge carriers are directed toward each other. This effect leads to the sign reversal of the photocurrent, which makes it possible on the basis of these structures to create selective photodetectors with injection properties. In the reverse direction of the photocurrent, these structures also operate in the mode of internal amplification of the primary photocurrent, but the integrated sensitivity in this mode is considerably less than that in the forward current direction.  相似文献   

7.
In KI crystals doped with divalent ions (Eu2+, Sr2+, Mn2+) a strong influence of the electric field is observed, after irradiation, on the carriers (electrons and holes) recombination kinetics. The phenomena are similar whether the electrons, distributed on traps bound to divalent ions, are excited by IR at 4 K, and recombine with trapped holes (Vk centers) or whether the holes are made thermally mobile at T>77 K. It is suggested that this is due to the recombination mechanism: the kinetics are simultaneously controlled by diffusion and tunneling. The tunneling range is a function of the applied field.  相似文献   

8.
In the present paper, photovoltaic studies of dye-sensitized solar cells (DSSCs) based on betacyanin/TiO2 and betacyanin/WO3–TiO2 have been done. The cell performances were compared through IV curves and wavelength dependant photocurrent measurements for the two new types of DSSCs. The TiO2-coated DSSC showed the photovoltage and photocurrent of 300 mV and 4.96 mA/cm2, whereas the cell employing WO3–TiO2 photoelectrode showed the values 435 mV and 9.86 mA/cm2, respectively. The conversion efficiency of TiO2 based dye-sensitized solar cell was found to be 0.69 %, while WO3–TiO2-based cell exhibited a higher conversion efficiency of 2.2 %. The better performance of the WO3–TiO2 dye-sensitized solar cell photoelectrode is thought to be due to an inherent energy barrier at the electrode/electrolyte interface leading to the reduced recombination of photoinduced electrons.  相似文献   

9.
《Current Applied Physics》2015,15(5):654-661
Three kinds of donor–acceptor (D–A) type photovoltaic polymers were synthesized based on 2,7-carbazole and thieno[3,4-c]pyrrole-4,6-dione (TPD). The conjugation of weakly electron (e)-donating 2,7-carbazole and strongly e-accepting TPD moieties yielded a deep highest occupied molecular orbital (HOMO) and its energy level was fine-controlled to be −5.72, −5.67 and −5.57 eV through the incorporation of thiophene (T), thieno[3,2-b]thiophene (TT) and bithiophene (BT) as a π-bridge. Polymer:[6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) based bulk heterojunction solar cells exhibited a high open-circuit voltage (VOC) in the range, 0.86–0.94 V, suggesting good agreement with the measured HOMO levels. Despite the high VOC, the thiophene (or thienothiophene)-containing PCTTPD (or PCTTTPD) showed poor power conversion efficiency (PCE, 1.14 and 1.25%) because of the very low short-circuit current density (JSC). The voltage-dependent photocurrent and photoluminescence quenching measurements suggested that hole transfer from PC71BM to polymer depends strongly on the HOMO level of the polymer. The PCTTPD and PCTTTPD devices suffered from electron–hole recombination at the polymer/PC71BM interfaces because of the insufficient energy offset between the HOMOs of the polymer and PC71BM. The PCBTTPD:PC71BM device showed the best PCE of 3.42% with a VOC and JSC of 0.86 V and 7.79 mA cm−2, respectively. These results show that photovoltaic polymers should be designed carefully to have a deep HOMO level for a high VOC and sufficient energy offset for ensuring efficient hole transfer from PC71BM to the polymer.  相似文献   

10.
An experimental study has been made of the short wavelength λ response of near-ideal silicon Schottky barrier photodetectors. It is shown that the major cause of reduced quantum efficiency (Q.E.) in this range of λ is the collection by the metal of majority carriers photogenerated within the image force maximum, in agreement with the theoretical predictions of Green. The bias-voltage dependence of the photocurrent in the near ultraviolet region is in good quantitative agreement with the image force model, with a Q.E. near unity for large reverse bias decreasing by approx. 15% at zero bias for λ = 0.37 μm, for example. The Q.E. under short-circuit conditions is relatively independent of λ for λ ? 0.45 μm, falling rapidly with decreasing λ from 95% at 0.45 μm to approx. 80% at 0.35 μm, again in good quantitative agreement with the above theory.  相似文献   

11.
We have measured and analyzed, at different temperatures and bias voltages, the dark noise spectra of GaAs/AlGaAs heterojunction infrared photodetectors, where a highly doped GaAs emitter is sandwiched between two AlGaAs barriers. The noise and gain mechanisms associated with the carrier transport are investigated, and it is shown that a lower noise spectral density is observed for a device with a flat barrier, and thicker emitter. Despite the lower noise power spectral density of flat barrier device, comparison of the dark and photocurrent noise gain between flat and graded barrier samples confirmed that the escape probability of carriers (or detectivity) is enhanced by grading the barrier. The grading suppresses recombination owing to the higher momentum of carriers in the barrier. Optimizing the emitter thickness of the graded barrier to enhance the absorption efficiency, and increase the escape probability and lower the dark current, enhances the specific detectivity of devices.  相似文献   

12.
In this paper, some models that have been put forward to explain the characteristics of a photovoltaic solar cell device under solar spot-illumination are investigated. In the experimental procedure, small areas of the cell were selected and illuminated at different solar intensities. The solar cell open circuit voltage (Voc) and short circuit current (Isc) obtained at different illumination intensities was used to determine the solar cell ideality factor. By varying the illuminated area on the solar cell, changes in the ideality factor were studied. The ideality factor obtained increases with decreasing illumination surface ratio. The photo-generated current at the illuminated part of the cell is assumed to act as a dc source that injects charge carriers into the p-n junction of the whole solar cell while the dark region of the solar cell operates in a low space charge recombination regime with small diffusion currents. From this analysis, a different model of a spot illuminated cell that uses the variation of ideality factor with the illuminated area is proposed.  相似文献   

13.
The photocurrent in conjugated polymer-fullerene blends is dominated by the dissociation efficiency of bound electron-hole pairs at the donor-acceptor interface. A model based on Onsager's theory of geminate charge recombination explains the observed field and temperature dependence of the photocurrent in PPV:PCBM blends. At room temperature only 60% of the generated bound electron-hole pairs are dissociated and contribute to the short-circuit current, which is a major loss mechanism in photovoltaic devices based on this material system.  相似文献   

14.
The forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) have been investigated at room temperature by taking the interface states (Nss) and series resistance (Rs) effects into account. The voltage dependent profiles of resistance (Ri) were obtained from both the I-V and C/G-V measurements by using Ohm’s Law and Nicollian methods. The obtained values of Ri with agreement each other especially at sufficiently high bias voltages which correspond the value of Rs of the diode. Therefore, the energy density distribution profile of Nss was obtained from the forward bias I-V data taking the bias dependence of the effective barrier height (BH) Φe and Rs into account. The high value of ideality factor (n) was attributed to high density of Nss and interfacial polymer layer at metal/semiconductor (M/S) interface. In order to examine the frequency dependence of some of the electrical parameters such as doping donor concentration (ND), Φe, Rs and Nss values, C-V and G/ω-V measurements of the diode were performed at room temperature in the frequency range of 50 kHz-5 MHz. Experimental results confirmed that the Nss, Rs and interfacial layer are important parameters that influence electrical characteristics of SBD.  相似文献   

15.
《Infrared physics》1993,34(6):655-659
The relaxation processes of the photoexcited carriers from the defect level in the band gap to the valence band states were investigated in Na and Tl doped p-type PbTe single crystals at T = 77 K. The observed photosignal oscillations were proved to be induced by stimulated recombination of photoexcited carriers from the defect level Ed ≈ 50 meV above the top of the valence band. Non-equilibrium carrier inversion population was produced by impulses of a TEA CO2-laser. The observed stimulated recombination may presumably be used for designing IR semiconductor lasers operating in the wavelength range of λ ∼ 25 μm at T = 77 K.  相似文献   

16.
An analytical approach to analyze the dark current–voltage (IV) and dynamic impedance vs reverse bias voltage (RdV) characteristics of an HgCdTe junction diode is presented in this paper. Application to the experimental data is discussed to illustrate the approach. It is shown that the relative contributions of the various dark current contributing mechanisms viz. diffusion, generation–recombination, thermal trap assisted tunneling, band-to-band tunneling, avalanche multiplication and ohmic current component can all be isolated, if present.  相似文献   

17.
We have made theoretical studies on the limitation of the open-circuit voltageV oc of a hydrogenated amorphous silicon (a-Si:H) p-i-n type solar cell. The effects of the tail states in the a-Si:H i layer and of the interface recombination are discussed in detail. The opencircuit voltage increases when the distribution of the tail states is sharp and/or the capture cross sections of these states are small. This is because the recombination rate of photogenerated carriers and/or the density of space charge due to trapped carriers in these states become low in these conditions. These effects of the tail states on the value ofV oc become pronounced when the built-in potential of the p-i-n junction is high. The decrease in the effective recombination velocity of carriers at the p/i and n/i interfaces results in an increase ofV oc. This increase becomes remarkable when the effects of the tail states on the value ofV oc are small. Both the sharp distribution of tail states and the small value of the interface recombination velocity are necessary to increase considerably the value ofV oc. We show the conditions of the material parameters necessary to obtain an open-circuit voltage of 1.0 V.  相似文献   

18.
We report the photocurrent response in a double barrier structure with quantum dots–quantum well inserted in central well. When this quantum dots–quantum well hybrid heterostructure is biased beyond +1 or −1 V, the photocurrent response manifests itself as a step-like enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the Γ–X–X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response.  相似文献   

19.
The Lateral photovoltaic effect (LPE) has been used as an effective tool to probe the dynamics of photogenerated charge carriers in conjugated polymer based optoelectronic devices. In this paper, we analyze the time-dependence of LPE in a position sensing device geometry using a discrete circuit equivalent model coupled with a spreading impedance approach. We elucidate the dependence of the lateral photovoltage (LPV) on the position, intensity and the modulation frequency (ω c ) of the light beam. Previous experimental results for the position and ω c dependence of the LPV in the steady state are successfully reproduced within the present approach. We predict a clear knee-like feature in the transient regime of the LPV for high photocurrent values. This feature prompts us to propose that the response time of the organic position sensing device decreases sharply with increasing incident intensity.  相似文献   

20.
雷衍连  刘荣  张勇  谭兴文  熊祖洪 《物理学报》2009,58(2):1269-1275
制备了结构为 ITO/PEDOT:PSS/P3HT:PCBM/Ca/Al的聚合物光电池器件,并在不同偏压下,分别测量了器件的光电流和暗电流随外加磁场的变化. 发现随外加磁场增加,光电流增强,暗电流减弱. 从聚合物光电池中光电流和暗电流的产生机制出发,对该现象进行了解释,认为外加磁场可以有效改变单重态极化子对和三重态极化子对之间的相对比例,进而使自由载流子浓度增加. 光生自由载流子浓度增加是光生电流增强的原因,而自由载流子与三重态激子的相互作用导致了暗电流减弱. 开路电压附近,光电流随磁场增加而增强可以近似 关键词: 聚合物光电池 磁场效应 光生电流 极化子对  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号