首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fourier Transform laboratory measurements have been carried out, for the first time in the 8–85 cm–1 spectral region, with an unapodized resolution of 3.3. 10–3 cm–1 and a frequency accuracy of 2. 10–4 cm–1. Samples from spectra of several molecules namely: CO, O3, H2O2, NO, NO2, HNO3, SO2, H2S, HOCL, NOCL, HNCO, ND3 and AsH3 are presented to show both the quality of the measurements and the type of information supplied by high resolution spectroscopy in the submillimeter region.  相似文献   

2.
The far infrared (30–110 cm–1) emission spectrum of the lower stratosphere has been measured from balloon altitudes with a high resolution (0.06 cm–1) rapid-scanning Michelson interferometer on two flights in 1976. The quality and resolution of the spectra obtained from two altitudes have permitted a careful search for emission lines from environmentally important molecules such as HCl, NO2, OH, H2O2, and CO, among the more prominent and well-known features due to H2O, O3 and O2. Column densities have been determined for H2O and O3 and upper limit estimates have been made from tentative identifications of several other constituents. However, the large angular field of view observed by the instrument prevented the determination of concentration profiles from atmospheric limb scans to the horizon. The possible future directions of this technique are outlined on the basis of operating experience over a 6 year programme. The viability of this method of monitoring the concentrations of minor constituents in the stratosphere is discussed with respect to other equivalent techniques.  相似文献   

3.
Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow reactor, peak N-atom concentrations in these flames are estimated to be on the order of 1012–5×1013 cm–3; the detection limit is about 1×1011 cm–3.  相似文献   

4.
The rotational structure of the ν3 fundamental of 14N16O2 has been recorded by employing a vacuum grating infrared spectrograph. The analysis has led to the assignment of over 500 R- and P-branch transitions in the spectral region 1562–1650 cm−1. Molecular constants for the upper state, 001, have been presented. No Q-branch transitions were used in the evaluation of these constants. The presently obtained and the band center ν0 = 1616.846 cm−1 differ significantly from previous determinations. Spin splitting was observed but no information was extracted about upper state spin splitting parameters.  相似文献   

5.
Rotational temperature of O2 has been measured in an atmospheric-air furnace using KrF laser-induced fluorescence. Average measurement errors of 10.7% and 5.1% over a temperature range of 1325–1725K were observed using two- and four-line excitation techniques, respectively. Ground-state depletion was observed for a spectral laser irradiance greater than approximately 7.5×106 W/cm2 cm–1. This technique is suitable for temperature measurements when the O2 vibrational population is not in thermal equilibrium.  相似文献   

6.
We report both Raman and infrared reflectivity spectra of M2Cu2O5 (M=Y, Ho) at room temperature in the spectral range of 30–1000 cm–1.37 (31) ir and 18 (15) Raman active modes of Y2Cu2O5 (Ho2Cu2O5) are observed. A factor group analysis has been performed to identify the symmetries of the observed modes. Comparing the vibrational spectra of these compounds we conclude that the phonons above 300 cm–1 originate from the Cu–O vibrations and those under 300 cm–1 from M–O vibrations.Alexander von Humboldt Foundation fellow  相似文献   

7.
The absorption spectrum of H2S has been recorded by intracavity laser absorption spectroscopy in the spectral region 16 180–16 440 cm−1 corresponding to an excitation of the (70±, 0) local mode pair. Seventy-seven sublevels could be rotationally assigned and fitted with a rms of 0.009 cm−1 by considering the (70±, 0) local mode pair as isolated. The corresponding vibrational terms combined with all the levels reported in the literature were used to refine the effective vibrational Hamiltonian parameters of H232S. The importance of the Fermi-type interaction is discussed.  相似文献   

8.
Dielectric response of K2SeO4 in the spectral region 5–460cm–1 was determined using transmissivity and reflectivity measurements as a function of temperature between 80 and 300K. The spectral features above 20cm–1 are interpreted using results of lattice vibrational analysis in three known commensurate phases. The low-frequency dielectric anomaly in the incommensurate phase can be roughly described by critical slowing-down of a Debye relaxation given rise to by the overdamped infrared active phason mode which softens at the incommensurate-commensurate transition.  相似文献   

9.
The V-T/R relaxation time of CDF3 was measured studying the laser-induced infrared fluorescence emitted by vibrationally excited CDF3. Following excitation by the 10R(12) line of a TEA CO2 laser infrared fluorescence has been detected without spectral resolution in the 1100–700 cm–1 range. A decay rate of 28.8 ms–1 Torr–1 was obtained for pure CDF3 when it is excited with a fluence of 390 mJ/cm2. Measurements have also been made in the presence of different bath gases (He, Ne, Ar, Xe, and CHF3).  相似文献   

10.
The spectra of IR reflection of the systems thin Bi4Ge3O12 film–substrate made of molten -SiO2 quartz in the region 10–1600 cm–1 at 295 K are investigatedterpretation of fundamental vibrations in the region 10–800 cm–1 and two phonon processes in the region 800–1600 cm–1 are considered.  相似文献   

11.
The formation of silicon oxide precipitates from Czochralski grown silicon depends on the time and temperature of the heat treatment as well as on the initial content of interstitially dissolved oxygen. Samples containing between 5×1017 Oi/cm3 and 13×1017 Oi/cm3 have been heated at 750° C for 96 h. SiO2 precipitates of various shape and size have been obtained and investigated by means of small angle neutron scattering (SANS) in the Q-range 0.05 Å–1<Q<0.2 Å–1. The obtained SANS patterns reveal a typical anisotropy of their intensity distribution, which splits into a central peak at Q<0.1 Å–1 due to the shape of the individual particles and a number of weak intensities for large Q-values, originating from a correlation between defects, possibly between the precipitates. While these correlation peaks in the SANS patterns are seen best for rather low values of about (5–7)×1017 Oi/cm3 oxygen content, the central peak anisotropy is most pronounced for higher values of ca 10×1017 Oi/cm3. The integrated intensity of the central peak increases with increasing initial oxygen content. For comparison, untreated samples of the same initial oxygen content do not reveal any anisotropic SAN scattering or a broadened central peak beam.  相似文献   

12.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

13.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

14.
Single-crystal ZnO has been hydrothermally grown with additional In2O3 in the solution. Schottky barrier contacts have been deposited by electron beam evaporation of Pd onto the face. Capacitance–voltage measurements have been performed to reveal the carrier concentration as a function of the In2O3 content in the solution, and secondary-ion mass spectrometry was used to measure the resulting In concentration in the samples. For an In2O3 content of 2×1019 cm−3, the average free electron concentration increased to 5×1018 cm−3 compared to 4×1017 cm−3 for the non-doped material. An increase of the In2O3 content to 4×1019 cm−3 leads to a measured carrier concentration of approximately 1×1019 cm−3; however, only up to a quarter of the incorporated In became electrically active. From thermal admittance spectroscopy measurements two prominent electronic levels are found, and compared with to the non-doped material case, the freeze-out of the shallow doping in the In-doped samples takes place at lower temperatures (below 80 K).  相似文献   

15.
Thev 2(A1) andv 5(E) fundamental vibration-rotation bands of12CH3F have been recorded under high resolution (0.015 to 0.020 cm–1) in the spectral range of 1460 cm–1. About 1100 transitions have been assigned. The Coriolis interaction between v2=1 and v5=1, and the l(2,-1) interaction in v5=1 have been rigorously treated. Sixteen molecular constants have been determined from a least squares analysis. They reproduce the observed data with an overall standard deviation of 0.0037 cm–1.  相似文献   

16.
This paper reports on far-infrared measurements of YBa2Cu3O7 films oriented with the c-axis perpendicular to the surface, by using a silicon reflection Fabry-Pérot interferometer as a multireflection device. From these we could derive the dielectric function, the refractive index, the field penetration depth and the surface impedance of the material. The one order of magnitude higher sensitivity of the method compared to a direct reflectance measurement allowed to find an almost continuous gap distribution in the 70–215 cm–1 region together with a separate gap at about 330 cm–1. A quasizero gap absorption is found down to 20 cm–1 even at low temperatures (10 K).  相似文献   

17.
Absorption spectra of the gases SiH4, NH3, C2H2 and of SiH4/Ar and SiH4/B2H6 mixtures have been measured in the spectral range of the CO2 laser from 9.2 to 10.8 µm. In agreement with literature, silane shows the highest absorption (absorption coefficient = 3.3 × 10–2 Pa–1 m–1). The deviation of the measured absorption behaviour of silane from literature, as far as the pressure dependence is concerned, can be explained by the enhanced spectral energy density in our experiment. This is confirmed by a rate-equation model involving the basic mechanisms of V-V and V-T energy transfer between vibrationally excited silane molecules. In contrast to silane, the absorption coefficient of NH3 at the 10P(20) laser line is 4.5 × 10–4 Pa–1 m–1 atp = 20 kPa and has its maximum of 4.5 × 10–3 Pa–1 m–1 at the 10R(6) laser line. For C2H2 and B2H6, is even less ( 2.1 Ò 10–5 Pa–1 m–1 for C2H2).  相似文献   

18.
Lifetimes for the first excited singlet state of H2CO, D2CO, and HDCO have been measured from linewidths. In the region of 7000–9000 cm−1 of vibrational energy, lifetimes between 2 and 14 psec were observed. These lifetimes increase with decreasing energy and may be smoothly extrapolated to the results below 4000 cm−1. The H2CO lifetimes are shorter than D2CO lifetimes but longer than those for HDCO.  相似文献   

19.
This paper is the second of a series that reports results on the measurements of the absorption cross section of SO2 in the UV/visible region at high resolution and that investigates high temperatures in support to planetary applications. Absorption cross sections of SO2 have been obtained in the 29 000–44 000 cm−1 spectral range (227–345 nm) with a Fourier transform spectrometer at a resolution of 2 cm−1 (0.4500 cm MOPD and boxcar apodisation). Pure SO2 samples were used and measurements were performed at room temperature (298 K) as well as at 318, 338 and 358 K. Temperature effects in this spectral region are investigated and are favorably compared to existing studies in the literature. Comparison of the absorption cross section at room temperature shows good agreement in intensity with most of the literature data, but shows that most of the latter suffer from inaccurate wavelength scale definition. Moreover, literature data are often given only on restricted spectral intervals. Combined with the data described in the first part of this series of papers on SO2, this new data set offers the considerable advantage of covering the large spectral interval extending from 24 000 to 44 000 cm−1 (227–420 nm), at the four temperatures investigated.  相似文献   

20.
The optical spectrum of reduced-T c GdBa2Cu3O7– has been measured for polarizations parallel and perpendicular to theab plane. The sample was an oxygen-deficient single crystal with a large face containing thec axis. The polarized reflectance from this face was measured from 20–300 K in the spectral region from 30–3000 cm–1, with 300 K data to 30000 cm–1. Kramers-Kronig analysis was used to determine the spectral dependence of theab and thec components of the dielectric tensor. The optical properties are strongly anisotropic. Theab-plane response resembles that of other reduced-T c materials whereas thec axis, in contrast, shows only the presence of several phonons. There is a complete absence of charge carrier response alongc aboveand belowT c. This observation allows us to set an upper limit to the free-carrier spectral weight for transport perpendicular to the CuO2 planes.Permanent address: Institute of Physics, CSAV, Prague, Czechoslovakia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号