首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self-similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; and that solution reproduces the well-known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that is smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. We conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.  相似文献   

2.
We consider a mixture that consists of a highly elastic material and a liquid dissolved in this material. Using the laws of classical thermodynamics, we state a variational principle describing the mixture equilibrium under static loading conditions. From this principle, we derive equilibrium equations and a system of constitutive relations characterizing the mixture elastic and thermodynamic properties. We state problems describing the stress-strain state of a swollen material and a statically loaded material in thermodynamic equilibrium with the liquid. We consider the case of incompressible mixture. The general theory is illustrated by examples concerned with the deformation behavior of inhomogeneously swollen cross-linked polymers and with their thermodynamics of strains and swelling in solvent media.  相似文献   

3.
考虑损伤的内变量黏弹-黏塑性本构方程   总被引:1,自引:0,他引:1  
张泷  刘耀儒  杨强  薛利军 《力学学报》2014,46(4):572-581
基于Rice 不可逆内变量热力学框架,在约束构型空间中讨论材料的蠕变损伤问题. 通过给定具体的余能密度函数和内变量演化方程推导出考虑损伤的内变量黏弹-黏塑性本构方程. 通过模型相似材料单轴蠕变加卸载试验对一维情况下的本构方程进行参数辨识和模型验证,本构方程能很好地描述黏弹性变形和各蠕变阶段.不同的蠕变阶段具有不同的能量耗散特点. 受应力扰动后,不考虑损伤的材料系统能自发趋于热力学平衡态或稳定态. 在考虑损伤的整个蠕变过程中,材料系统先趋于平衡态再背离平衡态发展. 能量耗散率可作为材料系统热力学状态偏离平衡态的测度;能量耗散率的时间导数可用于表征系统的演化趋势;两者的域内积分值可作为结构长期稳定性的评价指标.   相似文献   

4.
5.
6.
A thermodynamic model of Korteweg fluids undergoing phase transition and/or phase separation is developed within the framework of weakly nonlocal thermodynamics. Compatibility with second law of thermodynamics is investigated by applying a generalized Liu procedure recently introduced in the literature. Possible forms of the free energy and of the stress tensor, which generalize some earlier ones proposed by several authors in the last decades, are carried out. Owing to the new procedure applied for exploiting the entropy principle, the thermodynamic potentials are allowed to depend on the whole set of variables spanning the state space, including the gradients of the unknown fields, without postulating neither the presence of an energy or entropy extra-flux, nor an additional balance law for microforce.  相似文献   

7.
Thermodynamics of irreversible processes is applied to study the interaction of matter and a radiation field in non-local thermodynamic equilibrium within the framework of the average-atom model. The rate of entropy production of matter and the radiation field, in contact with a free electron reservoir in local thermodynamic equilibrium, is obtained using conjugates of the state variables. The average-atom one-electron populations are determined by minimizing the rate of entropy production at fixed electronic density, electronic temperature, and radiation field. Numerical results and comparisons with experiment for a photoionized iron plasma are presented and discussed. Our approach, which is based on first principles, can be used in a large variety of non-local thermodynamic equilibrium situations.  相似文献   

8.
Three generalizations of classical hydrodynamic theories that are compatible with equilibrium thermodynamics and that are suitable for an appropriate macroscopic dynamical theory of polymeric liquids are considered. The strain tensor, the stress tensor and the chain segment distribution function (introduced in the network theory of polymeric liquids) are accepted as new state variables. We find that the generalized hydrodynamic equations are compatible with equilibrium thermodynamics provided certain conditions restricting the freedom of choice of constitutive relations are satisfied. In some particular cases the conditions are known from other considerations. We say that a dynamical theory is compatible with equilibrium thermodynamics, or equivalently, that it obeys the entropy principle if the properties listed in section 2.1 are satisfied.  相似文献   

9.
Recently (Liu in J. Elast. 90:259–270, 2008) thermodynamic theory of elastic (and viscoelastic) material bodies has been analyzed based on the general entropy inequality. It is proved that for isotropic elastic materials, the results are identical to the classical results based on the Clausius-Duhem inequality (Coleman and Noll in Arch. Ration. Mech. Anal. 13:167–178, 1963), for which one of the basic assumptions is that the entropy flux is defined as the heat flux divided by the absolute temperature. For anisotropic elastic materials in general, this classical entropy flux relation has not been proved in the new thermodynamic theory. In this note, as a supplement of the theory presented in (Liu in J. Elast. 90:259–270, 2008), it will be proved that the classical entropy flux relation need not be valid in general, by considering a transversely isotropic elastic material body.   相似文献   

10.
A thermodynamics is developed for a unified theory of elasticity and plasticity in infinitesmal strain. The constitutive equations which relate stress and strain deviators are rate type differential equations. When they satisfy a Lipschitz condition, uniqueness for the initial value problem dictates that the stress and strain will be related through elastic relations. Failure of the Lipschitz condition occurs when a von Mises yield condition is achieved: Plastic yield then occurs and the deviator relations turn into the Prandtl-Reuss equations. The plastic yield solution is stable during loading and unstable during unloading. The requirement that the solution followed during unloading be stable dictates entry into an elastic regime. Appropriate thermodynamic functions are constructed. It then appears that stress deviator (not strain deviator) is a viable state variable, and the thermodynamic relations are constructed in terms of a Gibbs function. The energy balance leads to satisfaction of the Clausius-Duhem inequality (and thus the second law of thermodynamics) in an elastic regime because it is shown that in an elastic regime entropy production is caused only by heat flux. During yield, the proper method of differentiating yields entropy production terms in addition to those arising from heat flux. These terms are positive during loading, whence it is concluded that the requirement that a stable solution be followed leads to satisfaction of the Clausius-Duhem inequality during plastic as well as elastic behavior.  相似文献   

11.
It was always known that ordinary thermodynamics requires fairly smooth and slowly varying fields. Extended thermodynamics on the other hand is needed for rapidly changing fields with steep gradients. This notion is made explicit in the present paper by assigning orders of magnitude in steepness to the moments which are the field variables of extended thermodynamics. Once a process is deemed to be steep of O(n), the number of field variables may be read off from a table and the field equations are closed, by omission of all higher order terms. The procedure is demonstrated for stationary one-dimensional heat conduction and for heat conduction and one-dimensional motion. An instructive synthetical case of a “one-dimensional gas” is also treated and it is shown in this case how the hyperbolic equations of extended thermodynamics may be regularized – or parabolized – in a rational manner. The theory of O(n) is fully compatible with the entropy principle of that order, but no entropy postulate is needed here, at least not for closure. The theory can be shown to be compatible with an exponential phase density. Received April 15, 2002 / Published online November 6, 2002 RID="*" ID="*"Communicated by Kolumban Hutter, Darmstadt  相似文献   

12.
Summary A dissipative flow model is presented to describe dissipative deformation processes in a macroscopic solid continuum. Dissipative process may consist of material plasticity, material damage and other intrinsic mechanical phenomena represented by internal variables. The concept of a dissipative surface is introduced in the paper to distinguish between conservative and dissipative processes. Conventional plastic yielding and damage initiation are expressed by a unique condition which may else include other possible intrinsic mechanical dissipations. The proposed model is based on the principles of irreversible thermodynamics and the minimum free energy theorem. A modified material stability postulate, modified Drucker's postulate, in thermodynamic stress space is also used to obtain the same results. Received 1 July 1998; accepted for publication 13 January 1999  相似文献   

13.
A non-equilibrium thermodynamic theory due to Bree and Beevers [1] has been applied by Bree [2] to a certain class of mixtures, referred to in [2] as simple mixtures where it is found that global and local entropy inequalities can be obtained for the whole mixture, for each of its constituents or for any combination of its constituents, each of these entropy inequalities being derived from the single statement of the second law of thermodynamics adopted in [1]. The present work is primarily concerned with developing the theory further in order to include the more complex class of mixtures referred to in [2] as heterogeneous systems. In contrast with the thermodynamics of simple mixtures, it is found that for heterogeneous systems global and local entropy inequalities can be obtained only for the whole mixture and, in connection with this, it is felt that an early controversy in the subject is resolved. It is shown how the results obtained for heterogeneous systems may be used to provide a thermodynamic foundation for two methods of representing history dependent materials.  相似文献   

14.
We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.  相似文献   

15.
现有的各种损伤理论基本上都是关于等温问题的 ,且在不同程度上依赖于某些经验假设。本文在严格的不可逆热力学理论基础之上 ,建立了考虑温度效应的弹性损伤一般理论。推导出热弹性各向同性与各向异性损伤材料全部本构方程的一般形式 ,其中包括应力 应变关系、熵密度方程、损伤对偶张量表达式、热 固 损伤耦合的热传导方程和损伤演化方程。它们的特殊形式包含了等温各向同性与各向异性弹性损伤的本构方程  相似文献   

16.
Thermodynamic restrictions of elastic materials in general are well-known based on the Clausius–Duhem inequality by employing the simple Coleman–Noll procedure. One of the basic assumptions in this entropy inequality is that the entropy flux is defined as the heat flux divided by the absolute temperature. To avoid this unnecessary and possibly too restrictive assumption, the general entropy inequality has been proposed and its thermodynamic consequences exploited following the Müller–Liu procedure in which supply-free bodies are considered and Lagrange Multipliers are introduced. In this new thermodynamic theory, the entropy flux and heat flux relation identical to the above assumption has not been proved for elastic bodies in general. For isotropic elastic bodies, it was proved by Müller in 1971, using explicit isotropic representations for constitutive functions. Unfortunately, the procedure contains a flaw which was later pointed out, but can not be easily resolved. Although it was shown later that it can be proved by Müller–Liu procedure, it has not been available in the literature. In this paper, we shall establish this result, providing the missing details in the previous proof. The analysis will be carried out for isotropic viscoelastic materials and the case of elastic materials follows as a special case.   相似文献   

17.
A new method is presented for accounting for microstructural features of flowing complex fluids at the level of mesoscopic, or coarse-grained, models by ensuring compatibility with macroscopic and continuum thermodynamics and classical transport phenomena. In this method, the microscopic state of the liquid is described by variables that are local expectation values of microscopic features. The hypothesis of local thermodynamic equilibrium is extended to include information on the microscopic state, i.e., the energy of the liquid is assumed to depend on the entropy, specific volume, and microscopic variables. For compatibility with classical transport phenomena, the microscopic variables are taken to be extensive variables (per unit mass or volume), which obey convection-diffusion-generation equations. Restrictions on the constitutive laws of the diffusive fluxes and generation terms are derived by separating dissipation by transport (caused by gradients in the derivatives of the energy with respect to the state variables) and by relaxation (caused by non-equilibrated microscopic processes like polymer chain stretching and orientation), and by applying isotropy. When applied to unentangled, isothermal, non-diffusing polymer solutions, the equations developed according to the new method recover those developed by the Generalized Bracket [J. Non-Newtonian Fluid Mech. 23 (1987) 271; A.N. Beris, B.J. Edwards, Thermodynamics of Flowing Systems with Internal Microstructure, first ed., Oxford University Press, Oxford, 1994] and by the Matrix Model [J. Rheol. 38 (1994) 769]. Minor differences with published results obtained by the Generalized Bracket are found in the equations describing flow coupled to heat and mass transfer in polymer solutions. The new method is applied to entangled polymer solutions and melts in the general case where the rate of generation of entanglements depends nonlinearly on the rate of strain. A link is drawn between the mesoscopic transport equations of entanglements and conformation and the microscopic equation describing the configurational distribution of polymer segment stretch and orientation. Constraints are derived on the generation terms in the transport equations of entanglements and conformation, and the formula for the elastic stress is generalized to account for reversible formation and destruction of entanglements. A simplified version of the transport equation of conformation is presented which includes many previously published constitutive models, separates flow-induced polymer stretching and orientation, yet is simple enough to be useful for developing large-scale computer codes for modeling coupled fluid flow and transport phenomena in two- and three-dimensional domains with complex shapes and free surfaces.  相似文献   

18.
The paper explores thermodynamic aspect of modelling two-phase systems by the methods of irreversible thermodynamics in both classical (CIT) and extended (EIT) formulation. The conservation laws for two-phase model-continuum are derived. Then, the entropy production is analysed for two-fluid and homogeneous systems. Different equations of state are taken into consideration, namely that corresponding to the accompanying equilibrium state of physical element and more complex resulting from EIT. Obtained expressions for rate of entropy production per unit volume allow to identify the dissipative mechanisms in the two-phase system and suggest the forms of phenomenological relations to be adopted in the constitutive equations.  相似文献   

19.
This paper presents a macroscopic mechanical theory for ceramic-like materials undergoing isothermal deformations. The proposed model describes an elastic brittle material which is damageable only under tensile loading. The damage lowers the elastic stiffness in traction simulating hence the softening and the fracture (zero stillness) of the material. The basic idea is to consider the continuum as a mixture of two phases—a linear elastic phase and a masonry phase (which shows a linear elastic behavior under compression but cannot hold tractive loads at all). The damage is then related to the volume fraction β of the clastic constituent. The constitutive relations are derived from macroscopic thermodynamics with the volume fraction β and its gradient β taken as state variables.  相似文献   

20.
We study the nonequilibrium thermodynamics of two-phase media with nonequilibrium phase transitions. Assuming local (point) equilibrium within the limits of the phase and assuming mass additivity of the mixture entropy with respect to the phases, we obtain an expression for the mixture entropy production.We consider the motion of such media and derive formulas for the thermodynamic friction forces, heat transfer, condensation, and evaporation.In conclusion the author wishes to thank V. N. Nikolaevskii and V. V. Gogosov for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号