首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this report, we introduce a new micelle modifier useful to alter selectivity in micellar electrokinetic capillary chromatography (MECC). 1,2-Hexanediol acts as a class I organic modifier in that its effects are on the sodium dodecyl sulfate (SDS) micellar rather than the surrounding aqueous phase. This characteristic allows 1,2-hexanediol to improve resolution when applied at concentrations as low as 20 mM (0.25% v/v) by altering the selectivity observed with SDS alone. The effects of 1,2-hexanediol on the critical micelle concentration of SDS, electroosmotic flow, electrophoretic mobility of the SDS micelle, and reproducibility are presented. 1,2-Hexanediol had little impact on the migration time window at concentrations below 100 mM. Changes in selectivity induced by 1,2-hexanediol for a large set of model compounds are presented. Analytes capable of forming hydrogen bonds tend to decrease their interactions with the micellar phase while nonhydrogen bonding analytes increase their interactions. The usefulness of 1,2-hexanediol was demonstrated by examining its effects on the separation of dansylated amino acids. Eighteen of twenty amino acids could be separated with a resolution greater than 1.6 within 1600 s using a combination of 1,2-hexanediol and isopropanol.  相似文献   

2.
On the basis of the data on the distribution of various neutral solutes between sodium dodecyl sulfate (SDS) micelles and water, the control of separation selectivity in micellar electrokinetic chromatography (MEKC) by modification of the micellar phase with organic additives has been proposed and applied to the separation of simple model compounds. It was found that the distribution constants between the micelles and water (Kd,mc), which were determined by means of MEKC, of the solutes possessing hydrophilic functional groups are much larger than those between heptane and water (Kd,hep), whereas the Kd,mc values of the solutes possessing no hydropholic groups are comparable to their Kd,hep values. This indicates that the former solutes are preferentially solubilized in the Stern layer of the micelles and that the latter are located in the hydrocarbon core. In MEKC separations of aromatic compounds and metal acetylacetonates, considerable changes in separation selectivity were caused by the addition of compounds possessing both hydrophilic functional groups such as alcohols, phenol and ketones to the SDS micellar solution. The variations of the retention factors of the analytes could be explained in terms of saturation of the solubilization sites in the Stern layer with the modifiers, specific interaction of the modifiers with the analytes via hydrogen bonding in the micelles, and expansion of the core volume with the hydrocarbon parts of the modifiers. Such effects of the micellar modification could improve the resolution as well as the selectivity of MEKC separations.  相似文献   

3.
The usefulness of the micellar selectivity triangle (MST) for prediction and interpretation of separation patterns in micellar electrokinetic chromatography (MEKC) separations is presented. In addition, we demonstrate the capability of controlling selectivity properties of micelles through addition of organic modifiers with known solvation properties as predicted by MST. The examples are modification of the hydrogen bond donor (HBD) micelle of lithium perfluorooctanesulfonate, the hydrogen bond acceptor (HBA) micelle of tetradecyltrimethylammonium bromide, and the sodium dodecyl sulfate micelles with intermediate hydrogen bonding properties with two hydrophobic organic modifiers. One is an aliphatic alcohol, n-pentanol that can act as both a HBA and a HBD; by contrast, the other organic modifier is a fluorinated alcohol, hexafluoroisopropanol that is a strong HBD modifier and would enhance the hydrogen bond donor strength of micelles. A test sample composed of 20 small organic solutes representing HBA, HBD, and non-hydrogen bond aromatic compounds was carefully selected. The trends in retention behavior of these compounds in different micelles are consistent with the selectivity patterns predicted by the MST scheme. To the best of our knowledge, this is the first report on the unique selectivity of fluorinated alcohols as modifiers in MEKC. These results demonstrate the usefulness of the MST scheme for identifying pseudo-phases with highly similar or different selectivities and can serve as a guide for judicious selection of modifiers to create pseudo-phases with desired selectivity behavior on a rational basis.  相似文献   

4.
A series of photoinduced H-atom abstraction reactions between anthraquinone-2,6,-disulfonate, disodium salt (AQDS) and differently charged micellar substrates is presented. After a 248 nm excimer laser flash, the first excited triplet state of AQDS is rapidly formed and then quenched by abstraction of a hydrogen atom from the alkyl chain of the micelle surfactant, leading to a spin-correlated radical pair (SCRP). The SCRP is detected 500 ns after the laser flash using time-resolved (direct detection) electron paramagnetic resonance (TREPR) spectroscopy at X-band (9.5 GHz). By changing the charge on the surfactant headgroup from negative (sodium dodecyl sulfate, SDS) to positive (dodecyltrimethylammonium chloride, DTAC), TREPR spectra with different degrees of antiphase structure (APS) in their line shape were observed. The first derivative-like APS line shape is the signature of an SCRP experiencing an electron spin exchange interaction between the radical centers, which was clearly observable in DTAC micelles and absent in SDS micellar solutions. Solutions with surfactant concentrations well below the critical micelle concentration (cmc) or solutions where micellar formation had been disrupted (1:1 v/v CH(3)CN/H(2)O) also showed no APS line shapes in their TREPR spectra. These results support the conclusion that electrostatic forces between the sensitizer (AQDS) charge and the substrate (surfactant) headgroup charge are responsible for the observed effects. The results represent a new example of electrostatic control of a spin exchange interaction in mobile radical pairs.  相似文献   

5.
Z Liu  H Zou  M Ye  J Ni  Y Zhang 《Electrophoresis》1999,20(14):2898-2908
Influences of seven organic modifiers, including urea, methanol (MeOH), dioxane (DIO), tetrahydrofuran (THF), acetonitrile (ACN), 1-propanol (1-PrOH) and 2-propanol (2-PrOH), on the solute retention and the electrokinetic migrations in micellar electrokinetic capillary chromatography (MEKC) are investigated with sodium dodecyl sulfate (SDS) micelle as pseudostationary phase. It is observed that in the limited concentration ranges used in the MEKC systems the effect of organic modifier concentration on the retention can be described by the equation logk1=logk1w-SC for most binary aqueous-organic buffer, but deviations from this retention equation are observed at ACN and particularly THF as organic modifiers. With parameter S as a measure of the elutropic strength, the elutropic strength of the organic modifiers is found to follow a general order urea 相似文献   

6.
The influence of solubilized solutes on the micellization and critical micelle concentration (CMC) of sodium dodecyl sulfate (SDS) were investigated by means of capillary electrophoresis (CE). Three different structural types of test solutes, including chloropyridines. chlorophenols and cephalosporins with different binding strength to SDS micelles, were selected in this study. The variations of the effective electrophoretic mobility of these solutes as a function of SDS concentration in the premicellar and micellar regions were analyzed. Interestingly, the results indicate that, in the presence of these solubilized solutes, the micellization of SDS may occur over a range of SDS concentration, with the aggregate size increasing over this range. Depending on the nature of solubilized solutes and the extent of the interactions between solubilized solutes and SDS micelles, the CMC value of SDS may vary significantly. The incorporation of solubilized solutes into SDS micelles to form mixed micelles is proposed to interpret the migration behavior of solubilized solutes in CE.  相似文献   

7.
The migration behavior of cationic solutes and influences of the interactions of cationic solutes with sodium dodecyl sulfate (SDS) on the formation of micelles and its critical micelle concentration (CMC) were investigated by capillary electrophoresis at neutral pH. Catecholamines and structurally related compounds, including epinephrine, norepinephrine, dopamine, norephedrine, and tyramine, which involve different extents of hydrophobic, ionic and hydrogen-bonding interactions with SDS surfactant, are selected as cationic solutes. The dependence of the effective electrophoretic mobility of cationic solutes on the concentration of surfactant monomers in the premicellar region provides direct evidence of the formation of ion-pairs between cationic solutes and anionic dodecyl sulfate monomers. Three different approaches, based on the variations of either the effective electrophoretic mobility or the retention factor as a function of surfactant concentration in the premicellar and micellar regions, and the linear relationship between the retention factor and the product of a distribution coefficient and the phase ratio, were considered to determine the CMC value of SDS micelles. The suitability of the methods used for the determination of the CMC of SDS with these cationic solutes was discussed. Depending on the structures of cationic solutes and electrophoretic conditions, the CMC value of SDS determined varies in a wide concentration range. The results indicate that, in addition to hydrophobic interaction, both ionic and hydrogen-bonding interactions have pronounced effects on the formation of SDS micelles. Ionic interaction between cationic solutes and SDS surfactant stabilizes the SDS micelles, whereas hydrogen-bonding interactions weakens the solubilization of the attractive ionic interaction. The elevation of the CMC of SDS depends heavily on hydrogen-bonding interactions between cationic solutes and SDS surfactant. Thus, the CMC value of SDS is remarkably elevated with catecholamines, such as epinephrine and norepinephrine, as compared with norephedrine. In addition, the effect of methanol content in the sample solution of these cationic solutes on the CMC of SDS was also examined.  相似文献   

8.
The separation and selectivity of eight aromatic compounds ranging from hydrophilic to hydrophobic properties in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or Tween 20-modified mixed micelles were investigated. The effect of different operation conditions such as SDS and Tween 20 modifier surfactant concentration, buffer pH, and applied voltage was studied. The resolution and selectivity of analytes could be markedly affected by changing the SDS micelle concentration or Tween 20 content in the mixed micelles. Applied voltage and pH of running buffers were used mainly to shorten the separation time. Complete separation of eight analytes could be achieved with an appropriate choice of the concentration of SDS micelles or Tween 20-modified mixed micelles. Quicker elution and better precision could be obtained with SDS-Tween 20 mixed micelles than with SDS micelles. The mechanisms that migration order of those analytes was mainly based on their structures and solute-micelle interactions, including hydrophobic, electrostatic, and hydrogen bonding interactions, were discussed.  相似文献   

9.
Tracer diffusion coefficients of phenol, toluene, and benzoic acid in aqueous solutions of sodium dodecyl sulfate (SDS) were measured by the Taylor dispersion technique. In addition, the viscosities and densities of the SDS solutions were measured. For phenol and toluene, the effect of micelle formation on the diffusion coefficient is pronounced. When the SDS concentration is below the critical micelle concentration (cmc), the diffusion coefficients are almost independent of the SDS concentration. However, above the cmc there is a rapid decrease in the diffusion coefficients, and the apparent diffusion coefficients of the two solutes are the weighted average of free solute diffusion and the micelle diffusion. A model is presented to describe the diffusion behavior of the two solutes in aqueous micellar solutions of SDS. The interaction between the two solutes and the micelles has been investigated and the fraction of each solute that is solubilized by the micelles is estimated from the measured apparent diffusion coefficient. For benzoic acid, the diffusion coefficient is dependent on the joint contribution of the benzoic acid molecules that are solubilized by the micelles as well as the corresponding benzoate ions. The effect of micelle formation on the diffusion coefficient of benzoic acid is not as pronounced as for phenol and toluene. Copyright 2000 Academic Press.  相似文献   

10.
Micellar liquid chromatography (MLC) uses surfactant solutions as mobile phases with added organic additives to enhance both the elution strength and the chromatographic efficiency. Two aliphatic carboxylic acids (1-butanoic and 1-pentanoic) were used as MLC additives and compared with the two corresponding alcohols (1-butanol, 1-pentanol) in terms of elution strength, efficiency and selectivity. A set of 11 phenol derivatives was used as probe compounds. All micellar mobile phases were prepared with sodium dodecylsulfate (SDS) with concentration ranging from 0.05 to 0.15 M and the modifier content within 1.0 and 5.0% (v/v). The elution strength of different mobile phases containing a constant amount of SDS and different amounts of modifiers; and mobile phases containing a constant amount of modifier and different SDS concentration were determined and discussed. The effect of the acid modifiers on efficiency was studied constructing van Deemter plots that showed no minimum within the 0.01–0.7 mL/min flow rate range studied. Temperature effects were also studied constructing the classical van’t Hoff plots. The slight curvature of the plots in the 25–70 °C range may indicate some modification of the surfactant-bonded moiety layer on the stationary phase surface. Since no definitive advantage of the use of aliphatic acids were established compared to their alcohol counterpart, their terrible smell will probably preclude their use as MLC organic modifiers.  相似文献   

11.
Anionic dimeric surfactants with hydrophilic spacers containing two to six oxygen atoms were synthesized and applied as pseudostationary phases in micellar electrokinetic chromatography. Their selectivity was determined via linear solvation energy relationships. There were no differences in cohesiveness, polarizability or dipolarity with increasing spacer length, but there was a clear trend in increasing hydrogen bond accepting ability, and a concomitant decrease in hydrogen bond donating ability. The different selectivity of these dimeric surfactants compared to sodium dodecylsulfate can be useful for optimizing separations of mixtures of solutes for which these types of interactions are important. Their critical micelle concentrations were in the range of 0.2-0.3mM, except for the surfactant with the shortest spacer (<0.03 mM), and are much lower than those of conventional surfactants used in micellar electrokinetic chromatography.  相似文献   

12.
We examined polymers of sodium 11-acrylamidoundecanoate [poly(Na 11-AAU)] with a very high molecular mass (>10(6)) for their potential use as a pseudo-stationary phase in micellar electrokinetic capillary chromatography (MEKC). Size-exclusion chromatography and capillary electrophoresis studies reveal that the polymers are highly charged, and have a densely packed chain structure. For aromatic compounds, the polymeric surfactant showed significantly different selectivity than sodium dodecyl sulfate (SDS). It was suggested that one molecule of poly(Na 11-AAU) forms one micelle. The structural stability of this pseudo-stationary phase permitted its use with relatively high percentages of organic modifiers in the buffer medium, allowing the separation of highly hydrophobic compounds which are difficult to analyze by conventional MEKC with SDS.  相似文献   

13.
The effects of molecular structure on the solute-micelle and solute-stationary phase binding constants in micellar liquid chromatography (MLC) have been investigated. The following points have been observed. (1) There is quite a good linear relationship between the solute-micelle and solute-stationary phase binding constants in MLC with the cationic (CTAB) and anionic surfactants as the additives, which means that the contribution of physico-chemical properties of solutes on the solute-micelle and solute-stationary phase binding constants acts in a parallel way. (2) Good quantitative relationships between the solute-micelle and solute-stationary phase binding constants and the solvatochromic parameters have been obtained, which indicates that the distribution mechanism of the neutral solutes in MLC is determined via their molecular interactions. Both the cavity process and the hydrogen bond interaction play a very important role in the retention of neutral solutes in MLC. The contribution of the hydrogen bond interaction, especially the hydrogen donor ability of the solutes on those binding constants in anionic and cationic surfactant MLC, is determined in a different way. (3) Linear regression analysis of the solute-micelle and solute-stationary phase binding constants between the cationic and anionic surfactant MLC has been carried out. The obtained results suggest that the transfer of the non-polar solutes from the aqueous phase to the anionic and cationic surfactant micelles acts in a parallel way, but that of the polar solutes in a different way. A model of micelles with three different sites of solubilization, i.e., (1) the core of the micelle, (2) the surface of the micelle and (3) the palisade layer of the micelle, has been used to successfully explain the observed results. Finally, the retention behavior of solutes in MLC is compared with that in reversed-phase liquid chromatography (RP-LC). It has been observed that there is no difference in separation selectivity for the non-polar solutes between MLC and RP-LC; however, for the polar solutes, MLC provides a different separation selectivity compared to that in RP-LC.  相似文献   

14.
In this study, we report the effects of adding ionic liquids (ILs), as compared to adding conventional molecular organic solvents (MOSs), to aqueous buffer solutions containing molecular micelles in the separation of chiral analyte mixtures in micellar EKC (MEKC). The molecular micelle used in this study was polysodium oleyl-L-leucylvalinate (poly-L-SOLV). The ILs were 1-alkyl-3-methylimidazolium tetrafluoroborate, where the alkyl group was ethyl, butyl, hexyl, or octyl. These ILs were chosen due to their hydrophobicity, good solvating, and electrolyte properties. Thus, it was expected that these ILs would have favorable interactions with chiral analytes and not adversely affect the background current. Common CE buffers, mixed with a molecular micelle, and an IL or a MOS, were used for these chiral separations. The buffers containing an IL in the concentration range of 0.02-0.1 v/v were found to support a reasonable current when an electric field strength of 500 V/cm was applied across the capillary. However, a current break down was observed for the buffers containing more than 60% v/v MOS on application of the above-mentioned electric field. The chiral resolution and selectivity of the analytes were dependent on the concentration and type of IL or MOS used.  相似文献   

15.
Linear solvation energy relationships and free energy of transfer data were used to evaluate the influence of the surfactant counter-ion on selectivity in micellar electrokinetic chromatography. It was determined that selectivity differences are dependent on the valency of the counter-ion but not the type of counter-ion. Monovalent surfactants, sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate, have nearly identical selectivity behavior. The divalent surfactants, magnesium didodecyl sulfate and copper didodecyl sulfate also show very similar behavior. However, when the divalent counter-ion species is compared to SDS under similar conditions, significant differences are observed. Most notably, the utilization of divalent counter-ion species of dodecyl sulfate surfactants causes the micelles to become more hydrophobic and a weaker hydrogen bond donating pseudo-stationary phases. It is believed that the divalent counter-ions reduce the electrostatic repulsion between the surfactant head groups and therefore, increase the chain packing of the monomers in the micelle aggregates. This reduces the degree of hydration of the micellar palisade layer leading to a decreased ability of the micelle to participate in polar/polarizable and hydrogen bonding interactions with solute molecules.  相似文献   

16.
The retention behaviour of beta-lactam antibiotics in micellar electrokinetic chromatography (EKC) was investigated. Sodium dodecyl sulphate (SDS) and sodium N-lauroyl-N-methyltaurate were used an anionic surfactants at concentrations of 0.05-0.3 M. It was found that the retention of ionic substances in micellar EKC is determined by the following three factors: the electrophoretic migration of the ionic substances, the interaction between the ionic substances and ionic surfactants and solubilization of the solute by the micellar phase. A difference in the retention behaviours of cationic substances was observed between the two anionic surfactants, which have different groups neighbouring the charge-bearing groups. The effect of an ion-pairing reagent was also investigated to make the effect of the micelle clearer. All test solutes were successfully separated by micellar EKC at SDS concentrations above 0.1 M, with theoretical plate numbers ranging from 70,000 to 260,000.  相似文献   

17.
A micellar electrokinetic chromatography method is presented for the determination of the partition coefficient for the distribution of nonpolar and moderately polar solutes between the micelle and the aqueous phases in aqueous micellar solutions. In comparison with the literature the method is, theoretically and experimentally, the most straightforward for this application. An equation is derived for the determination of the partition coefficient in a coated fused silica capillary, with neglible electroosmotic flow, from simple measurements of the migration times of solutes and a marker for micelle migration. The advantages and limitations of this method are discussed. The method is tested by using sodium dodecylsulfate (SDS) surfactant and naphthalene, benzene, toluene, and phenol solutes. Micellar electrokinetic chromatography in coated columns isideally suited for the separation of hydrophobic solutes in aqueous samples.  相似文献   

18.
王淼  严建伟  王颖  吕建德  傅小芸 《化学学报》2003,61(12):1980-1985
以阴离子表面活性剂十二烷基硫酸钠(SDS)、非离子表面活性剂吐温20( Tween 20)及两者组成的混合胶束体系作为毛细管胶束电动色谱(MECC)的分离介 质,进行4种结构相似的酸性化合物的MECC分离研究,考察了胶束的类型、表面活 性剂的浓度、缓冲溶液的pH值及有机改性剂乙醇对分离的影响。结果表明各因素对 酸性药物的MECC分离有不同的影响规律。SDS胶束体系对溶质的保留值最大, Tween 20体系的保留值最小,二者的分离选择性正好相反,混合胶束体系的分离行 为则介于两者之间;在SDS和Tween 20体系中,表面活性剂浓度增加,溶质的保留 时间均随之递增,混合胶束体系中,总浓度一定,随Tween 20配比的增加,溶质的 保留时间先减少后增加;缓冲溶液的pH值增大,使溶质的分离效果均能变差;有机 改性剂乙醇的加入对容量因子的影响主要与溶质的疏水性有关,并对分离作用机理 进行了探讨。在SDS和Tween 20 MECC体系下,分别进行了实样测定,取得了满意的 结果。  相似文献   

19.
The addition of 1–20% (v/v) of methanol or acetonitrile as organic modifier to the mobile phase in a micellar electrokinetic capillary chromatographic (MECC) system, containing sodium dodecyl sulfate and a buffer, is shown to extend the elution range and thus increase the peak capacity of a given system. Although the net change in the elution range parameter, to/tmc, is essentially the same for both modifiers, the acetonitrile-modified system exhibits much faster elution times for the polar and non-polar test solutes employed in this study. Retention, as measured by the capacity factor, is generally decreased with the increase of an organic modifier, just as in conventional reversed phase chromatography. However, changes in selectivity as a function of the added modifiers are noted among polar and non-polar solutes as well. The efficiency of these MECC systems is increased with the addition of either organic modifier.  相似文献   

20.
Kuo CH  Lee SS  Chang HY  Sun SW 《Electrophoresis》2003,24(6):1047-1053
Micellar electrokinetic chromatography (MEKC) was used to separate twelve lignan compounds originating from Phyllanthus plants. To increase the reliability of peak identification, two micellar systems, the sodium dodecyl sulfate (SDS) and sodium deoxycholate (SDC) systems, were investigated. Because of the high lipophilicity of the lignan analytes, tetrahydrofuran was added to the SDS micellar system to increase its separating ability. In contrast to SDS system, no organic solvent was needed with SDC micelles. Both micellar systems gave a satisfactory separation within a reasonable analysis time. On considering accuracy for quantitation, the SDS method was validated and then used to determine the content of the lignans in two Phyllanthus plants. The selectivity (elution order of the lignans) was significantly different between the SDS and SDC micellar systems. Retention in SDC-MEKC seemed to be dominated by the hydrophobicity of the lignan solutes, while in SDS-MEKC, retention was greatly influenced by hydrogen bonding interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号