首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper reports on a study of the kinetics of electron tunneling transport between electron and hole centers in Li2B4O7 and LiB3O5 lithium borate crystals under the conditions where the mobility of one of the partners in the recombination process is thermally stimulated. A mathematical model has been proposed to describe all specific features in the relaxation kinetics of the induced optical density observed in Li2B4O7 (LTB) and LiB3O5 (LBO) nonlinear optical crystals within a broad time interval of 10−8−1 s after a radiation pulse. The results of calculations have been compared with experimental data on transient optical absorption (TOA) of LTB and LBO crystals in the visible and ultraviolet spectral regions. The nature of the radiation defects responsible for TOA and the dependence of the TOA decay kinetics on temperature, excitation power, and other experimental conditions have been discussed.  相似文献   

2.
We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns–50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1–5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y(r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K(t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50–100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.  相似文献   

3.
A complex investigation of the dynamics of electronic excitations in nonlinear optical crystals of ammonium dihydrophosphate NH4H2PO4 was performed using low-temperature vacuum UV luminescence spectroscopy with time resolution upon selective photoexcitation by synchrotron radiation. Data on the photoluminescence decay kinetics, time-resolved photoluminescence spectra (2–6.2 eV), and time-resolved photoluminescence excitation spectra (4–24 eV) were obtained for the first time for NH4H2PO4 crystals at 8 K. It is ascertained that the photoluminescence of NH4H2PO4 crystals in the vicinity of 4.7 eV has intrinsic character due to the radiative annihilation of self-trapped excitons. Possible channels of generation and decay of relaxed and unrelaxed electronic excitations in NH4H2PO4 crystals are discussed.  相似文献   

4.
A study of transient optical absorption of the ADP (NH4H2PO4) and KDP (KH2PO4) nonlinear crystals in the visible and UV spectral regions is reported. Measurements made by absorption optical spectroscopy with nanosecond-time resolution established that the transient optical absorption (TOA) of these crystals originates from optical transitions in the hole A and B radicals and the optical-density relaxation kinetics is rate-controlled by interdefect tunneling recombination, which involves these hole centers and the electronic H0 centers representing neutral hydrogen atoms. At 290 K, hole polarons and the H0 centers undergo thermally stimulated migration, which is not accompanied by carrier ejection into the conduction or valence band. The slow components of the TOA kinetics with characteristic times from a few tens of milliseconds to a few seconds can be assigned to diffusion-controlled annihilation of hydrogen vacancies associated with impurity or structural defects.  相似文献   

5.
The effect of organic dyes on the dielectric properties of KH2PO4 (KDP) crystals is studied over a wide range of temperatures. The dielectric properties of KDP crystals doped with molecules of the Chicago Sky Blue and Amaranth organic dyes are investigated for the first time. The dye molecules can be incorporated into the crystal lattice of KDP and selectively paint the pyramidal growth sectors of the crystal. The influence of dye organic impurities on the domain contribution to the permittivity is analyzed with due regard for the sectoral crystal structure. It is demonstrated that, upon doping of KDP crystals with organic dyes, the blocking effect of background impurities on domain walls is substantially weakened in the prismatic growth sector of the crystal in the polar phase. This leads to a noticeable change in the dielectric properties, specifically to an increase in the domain contribution to the permittivity of the crystal.  相似文献   

6.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

7.
For over two decades, the high-temperature phase transition (HTPT) at around T p = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.  相似文献   

8.
Results of a study of transient optical absorption (TOA) and luminescence of lithium gadolinium orthoborate Li6Gd(BO3)3 (LGBO) in the visible and UV spectral regions are presented. As revealed by absorption optical spectroscopy with nanosecond time resolution, the LGBO TOA derives from optical transitions in hole centers, with the optical density relaxation kinetics being mediated by interdefect tunneling recombination involving these centers and neutral lithium atoms acting as electronic Li0 centers. At 290 K, the Li0 centers are involved in thermostimulated migration, which is not accompanied by carrier transfer to the conduction or valence band. The slow components of the TOA decay kinetics, with characteristic times ranging from a few milliseconds to seconds, have been assigned to diffusion-limited annihilation of lithium interstitials with vacancies. The mechanisms responsible for the creation and relaxation of short-lived Frenkel defect pairs in the LGBO cation sublattice have been analyzed.  相似文献   

9.
The dielectric and polarization properties of potassium dihydrogen phosphate (KDP) single crystals doped with Li, Na, and NH4 impurities have been investigated in the temperature range 70–150 K. It is found that the domain freezing temperature in the lithium-containing sample exceeds that for nominally pure KDP. Disappearance of freezing is observed in the ammonium-doped crystal.  相似文献   

10.
A complex investigation of the dynamics of electronic excitations in potassium dihydrophosphate (KDP) crystals is performed by low-temperature time-resolved vacuum ultraviolet optical luminescence spectroscopy with subnanosecond time resolution and with selective photoexcitation by synchrotron radiation. For KDP crystals, data on the kinetics of the photoluminescence (PL) decay, time-resolved PL spectra (2–6.2 eV), and time-resolved excitation PL spectra (4–24 eV) at 10 K were obtained for the first time. The intrinsic character of the PL of KDP in the vicinity of 5.2 eV, which is caused by the radiative annihilation of self-trapped excitons (STEs), is ascertained; σ and π bands in the luminescence spectra of the STEs, which are due to singlet and triplet radiative transitions, are resolved; and the shift of the σ band with respect to the π band in the spectra of the STEs is explained.  相似文献   

11.
The Dy3+ and Eu3+ activated K3Al2 (PO4)3 phosphors were prepared by a combustion synthesis. From a powder X-ray diffraction (XRD) analysis the formation of K3Al2 (PO4)3 was confirmed. In the photoluminescence emission spectra, the K3Al2(PO4)3:Dy3+ phosphor emits two distinctive colors: blue and yellow whereas K3Al2(PO4)3:Eu3+ emits red color. Thus the combination of colors gives BYR (blue–yellow–red) emissions can produce white light. These phosphors exhibit a strong absorption between 340 and 400 nm which suggest that present phosphor is a promising candidate for producing white light-emitting diodes (LED).  相似文献   

12.
The nonlinear process of two-photon interband absorption is studied in tungstate and molybdate oxide crystals excited by a sequence of high-power picosecond pulses with a wavelength of 523.5 nm. The transmission of the crystals is measured for the excitation pulse intensity up to 100 GW/cm2. The pulse intensity in the crystals initially transparent at a wavelength of 523.5 nm is strongly limited due to two-photon absorption (TPA), and the reciprocal transmission in PbWO4 and ZnWO4 crystals reaches 50–60. In all crystals, TPA induces long-lived one-photon absorption, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the laser excitation intensity. Absorption dichroism manifests itself in a significant difference in the transmission intensities when the principal orthogonal optical axes of the crystals are excited. The TPA coefficients are determined during the excitation of two optical axes of the crystals. TPA coefficients β for the crystals vary over a wide range, namely, from β = 2.4 cm/GW for PbMoO4 to β = 0.14 cm/GW for CaMoO4, and the values of β can differ almost threefold when different optical axes of a crystal are excited. Good agreement is achieved between the measured intensities limited by TPA and the estimates calculated from the measured nonlinear coefficients. Stimulated Raman scattering (SRS) upon excitation at a wavelength of 523.5 nm is only detected in two of the four crystals under study. The experimental results make it possible to explain the suppression of SRS by its competition with TPA, and the measured nonlinear coefficients are used to estimate this suppression.  相似文献   

13.
The aspects of structure, dipole ordering, and ionic conductivity of the Na3Cr2(PO4)3 crystal with the four polymorphic phases (α, α', β, and γ) have been investigated. The features of the α-Na3Cr2(PO4)3 crystal structure and its dipole ordering and relaxation polarization in the low-temperature α and α' phases have been refined. The occurrence of Na3Cr2(PO4)3 dipole ordering in the α and α' phases and high ionic conductivity in the β and γ phases is attributed to the structural changes in the rhombohedral [Me2(PO4)3]–33∞ crystal frame upon phase transformations α → α', α' → β, and β → γ. A model for explaining the dipole ordering and ionic conductivity phenomena in Na3Cr2(PO4)3 is proposed.  相似文献   

14.
A method has been proposed to analyze the dynamics of interband two-photon absorption in a nonlinear medium excited by a sequence of picosecond laser pulses of variable intensity and continuous probe radiation. Induced absorption leading both to hysteresis in the dependence of the absorption on the intensity of laser pump radiation and to the opacity of crystals at the pump wavelength has been revealed in initially transparent ZnWO4 and PbWO4 crystals irradiated by a train of 523.5-nm pulses with a duration of 20 ps at pump intensities of 5 to 140 GW/cm2. The kinetics of an increase in absorption and its subsequent relaxation at a 523.5-nm picosecond excitation of the crystals have been measured with continuous 633-nm probe radiation. An exponential component of the increase in absorption with the time constant τ = 2−3.5 and 8–9.5 μs depending on the direction of the linear polarization of pump radiation has been revealed at 300 K in ZnWO4 and PbWO4 crystals, respectively. The absorption relaxation kinetics in the crystals are complicated and approach an exponential at a late stage with the constant τ = 40−130 and 12–80 ms for the ZnWO4 and PbWO4 crystals, respectively.  相似文献   

15.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

16.
The transient optical absorption and luminescence of LiB3O5 (LBO) nonlinear crystals in the visible and UV spectral ranges were studied. Measurements made using absorption optical spectroscopy with nsscale time resolution revealed that the transient optical absorption (TOA) in LBO originates from optical transitions in hole centers and that the kinetics of optical density relaxation are rate-limited by interdefect nonradiative tunneling recombination involving these hole centers and the Li0 electronic centers, which represent neutral lithium atoms. At 290 K, the Li0 centers can migrate in a thermally stimulated, one-dimensional manner, a process which is not accompanied by carrier delocalization into the conduction or valence band. It is shown that the pulsed LBO cathodoluminescence kinetics is rate-limited by a recombination process involving two competing valence-band-mediated hole centers and shallow B2+ electronic centers. The radiative recombination accounts for the characteristic σ-polarized LBO luminescence in the 4.0-eV region.  相似文献   

17.
Carbon-coated olivine-structured LiFe0.5Co0.5PO4 solid solution was synthesized by a facile rheological phase method and applied as cathode materials of lithium-ion batteries. The nanostructure’s properties, such as morphology, component, and crystal structure for the samples, characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) determination, X-ray photoelectron spectroscopy (XPS), and the electrochemical performances were evaluated using constant current charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results indicate that nanoplatelet- and nanorod-structured LiFe0.5Co0.5PO4/C composites were separately obtained using stearic acid or polyethylene glycol 400 (PEG400) as carbon source, and the surfaces of particles for the two samples are ideally covered by full and uniform carbon layer, which is beneficial to improving the electrochemical behaviors. Electrochemical tests verify that the nanoplatelet LiFe0.5Co0.5PO4/C shows a better capacity capability, delivering a discharge specific capacity of 133.8, 112.1, 98.3, and 74.4 mAh g?1 at 0.1, 0.5, 1, and 5 C rate (1 C?=?150 mA g?1); the corresponding cycle number is 5th, 11th, 15th, 20th, and 30th, respectively, whereas the nanorod one possesses more excellent cycling ability, with a discharge capacity of 83.3 mAh g?1 and capacity retention of 86.9% still maintained after cycling for 100 cycles at 0.5 C. Results from the present study demonstrate that the LiFe0.5Co0.5PO4 solid solution nanomaterials with favorable carbon coating effect combine the characteristics and advantage of LiFePO4 and LiCoPO4, thus displaying a tremendous potential as cathode of lithium-ion battery.  相似文献   

18.
Li3V2(PO4)3 glass-ceramic nanocomposites, based on 37.5Li2O-25V2O5-37.5P2O5 mol% glass, were successfully prepared via heat treatment (HT) process. The structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD patterns exhibit the formation of Li3V2(PO4)3 NASICON type with monoclinic structure. The grain sizes were found to be in the range 32–56 nm. The effect of grain size on the dynamics of Li+ ions in these glass-ceramic nanocomposites has been studied in the frequency range of 20 Hz–1 MHz and in the temperature range of 333–373 K and analyzed by using both the conductivity and modulus formalisms. The frequency exponent obtained from the power law decreases with the increase of temperature, suggesting a weaker correlation among the Li+ ions. Scaling of the conductivity spectra has also been performed in order to obtain insight into the relaxation mechanisms. The imaginary modulus spectra are broader than the Debye peak-width, but are asymmetric and distorted toward the high frequency region of the maxima. The electric modulus data have been fitted to the non-exponential Kohlrausch–Williams–Watts (KWW) function and the value of the stretched exponent β is fairly low, suggesting a higher ionic conductivity in the glass and its glass-ceramic nanocomposites. The advantages of these glass-ceramic nanocomposites as cathode materials in Li-ion batteries are shortened diffusion paths for Li+ ions/electrons and higher surface area of contact between cathode and electrolyte.  相似文献   

19.
The efficiency of formation and time evolution of radiation-induced structural defects and pulsed luminescence in KPb2Cl5 crystals under the action of a single electron pulse (E = 250 keV, τ = 20 ns) have been investigated. The spectra (1.1–3.8 eV) and relaxation kinetics (time interval 5 × 10?8?5 s) of transient optical absorption and the pulsed cathodoluminescence spectra and decay kinetics (1.4–3.1 eV) have been measured in the temperature range 80–300 K. It is revealed that the induced optical density and its time evolution depend strongly on temperature, and the absorption relaxation time contains several components and reaches several seconds at T = 300 K. The decay kinetics of transient absorption and pulsed cathodoluminescence kinetics have different orders and are controlled by different relaxation processes.  相似文献   

20.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号