首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities.  相似文献   

2.
An environmentally benign method for the synthesis of noble metal nanoparticles has been reported using aqueous solution of gum kondagogu (Cochlospermum gossypium). Both the synthesis, as well as stabilization of colloidal Ag, Au and Pt nanoparticles has been accomplished in an aqueous medium containing gum kondagogu. The colloidal suspensions so obtained were found to be highly stable for prolonged period, without undergoing any oxidation. SEM–EDXA, UV–vis spectroscopy, XRD, FTIR and TEM techniques were used to characterize the Ag, Au and Pt nanoparticles. FTIR analysis indicates that –OH groups present in the gum matrix were responsible for the reduction of metal cations into nanoparticles. UV–vis studies showed a distinct surface plasmon resonance at 412 and 525 nm due to the formation of Au and Ag nanoparticles, respectively, within the gum network. XRD studies indicated that the nanoparticles were crystalline in nature with face centered cubic geometry. The noble metal nanoparticles prepared in the present study appears to be homogeneous with the particle size ranging between 2 and 10 nm, as evidenced by TEM analysis. The Ag and Au nanoparticles formed were in the average size range of 5.5 ± 2.5 nm and 7.8 ± 2.3 nm; while Pt nanoparticles were in the size range of 2.4 ± 0.7 nm, which were considerably smaller than Ag and Au nanoparticles. The present approach exemplifies a totally green synthesis using the plant derived natural product (gum kondagogu) for the production of noble metal nanoparticles and the process can also be extended to the synthesis of other metal oxide nanoparticles.  相似文献   

3.
Ag nanoparticles with diameter in the range of 10–25 nm had been synthesized using a simple sucrose ester micellar-mediated method. Ag nanoparticles were formed by adding AgNO3 solution into the sucrose ester micellar solution containing sodium hydroxide at atmospheric condition after 24 h of aging time. Trace amount of dimethyl formamide (DMF) in the sucrose ester solution served as a reducing agent while NaOH acted as a catalyst. The produced Ag nanoparticles were highly stable in the sucrose ester micellar system as there was no precipitation after 6 months of storage. The as-synthesized Ag nanoparticles were characterized using transmission electron microscope (TEM), X-ray diffractometer (XRD), dynamic light scattering (DLS) and UV–vis spectroscopy (UV–vis). Formation mechanism of Ag nanoparticles in the micellar-mediated synthesis is postulated. The antibacterial properties of the Ag nanoparticles were tested against Methicillin-resistant Staphylococcus aureus (MRSA) (Gram-positive) and Aeromonas hydrophila (Gram-negative) bacteria. This work provides a simple and “green” method for the synthesis of highly stable Ag nanoparticles in aqueous solution with promising antibacterial property.  相似文献   

4.
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core–shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core–shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 °C for 2.5 h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA–silica hybrid shell. The resulting hybrid silica core–shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core–shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA–silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core–shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.  相似文献   

5.
The work presents a novel surface-enhanced Raman scattering (SERS)-active surface prepared by electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube (MWCNT)–alumina-coated silica (ACS) nanocomposite. The formation of Ag nanoparticles in MWCNT–ACS nanocomposite was investigated by scanning electron microscopy. It shows that Ag nanoparticles with a diameter of about 100–200 nm in the MWCNT–ACS nanocomposite and some Ag nanoparticles aggregated to form interconnected aggregates. The Ag–MWCNT–ACS-coated indium tin oxide substrate has a considerable effect on the Raman spectra with improvements of more than four times of magnitude as compared with the Ag-coated indium tin oxide substrate. The present methodology demonstrates that the composite composed of Ag, MWCNT, and ACS is suitable for potential plasmonic devices.  相似文献   

6.
Trimodal hierarchical yolk-shell materials consisting of TS-1 core and mesoporous carbon shell(YS-TS-1@MC) was successfully synthesized by using TS-1@mesosilica as hard template,sucrose as carbon source and organic base tetrapropylammonium hydroxide(TPAOH) as silica etching agent.The resultant YS-TS-1@MC contains the micropores(0.51 nm) in TS-1 core,the mesopores(2.9 nm) in carbon shell as well as a void or a stack pore between TS-1 fragcments(TS-1 intercrystal mesopores,~18.4 nm).Under the rigorous etching conditions,the crystalline structure of TS-1 core was well retained.The YS-TS-1@MC served as a good support for palladium nano-particles(Pd NPs) or Rh(OH)x species,giving rise to efficient bifunctional catalysts for the tandem reactions including one-pot synthesis of propylene oxide or amides.  相似文献   

7.
Silica-metal core–shell particles, as for instance those having siliceous core and nanostructured gold shell, attracted a lot of attention because of their unique properties resulting from combination of mechanical and thermal stability of silica and magnetic, electric, optical and catalytic properties of metal nanocrystals such as gold, silver, platinum and palladium. Often, the shell of the core–shell particles consists of a large number of metal nanoparticles deposited on the surface of relatively large silica particles, which is the case considered in this work. Namely, silica particles having size of about 600 nm were subjected to surface modification with 3-aminopropyltrimethoxysilane. This modification altered the surface properties of silica particles, which was demonstrated by low pressure nitrogen adsorption at ?196 °C. Next, gold nanoparticles were deposited on the surface of aminopropyl-modified silica particles using two strategies: (i) direct deposition of gold nanoparticles having size of about 10 nm, and (ii) formation of gold nanoparticles by adsorption of tetrachloroauric acid on aminopropyl groups followed by its reduction with formaldehyde.The overall morphology of silica–gold particles and the distribution of gold nanoparticles on the surface of modified silica colloids were characterized by scanning electron microscopy. It was shown that direct deposition of colloidal gold on the surface of large silica particles gives more regular distribution of gold nanopartciles than that obtained by reduction of tetrachloroauric acid. In the latter case the gold layer consists of larger nanoparticles (size of about 50 nm) and is less regular. Note that both deposition strategies afforded silica–gold particles having siliceous cores covered with shells consisting of gold nanoparticles of tunable concentration.  相似文献   

8.
Novel core–shell SDC (Ce0.8Sm0.2O1.9)/amorphous Na2CO3 nanocomposite was prepared for the first time. The core–shell nanocomposite particles are smaller than 100 nm with amorphous Na2CO3 shell of 4–6 nm in thickness. The nanocomposite electrolyte shows superionic conductivity above 300 °C, where the conductivity reaches over 0.1 S cm−1. Such high conductive nanocomposite has been applied in low-temperature solid oxide fuel cells (LTSOFCs) with an excellent performance of 0.8 W cm−2 at 550 °C. A new potential approach of designing and developing superionic conductors for LTSOFCs was presented to develop interface as ‘superionic highway’ in two-phase materials based on coated SDC.  相似文献   

9.
The advancement in early diagnosis and precise treatments options result in more predictable and powerful health care modalities. Aptamers are known as nucleic acid structures with three-dimensional conformation to selectively bind a target site. Physicochemical properties of aptamers, their conjugation with nanoparticles (NPs) in theranostics applications and their internalization have been found to be of interest in development of aptamer-based drug delivery systems. Therefore, we aimed to present an overview on the structure and generation of aptamers followed by advantages of aptamers-conjugated NPs and their theranostics applications in various diseases such as oncology, inflammatory diseases and viral diseases. Afterward, we discussed several reports on the internalization approaches of aptamers, efficiency of aptamers vs. their analogous, and implications of aptamers in clinical trials. Finally, we discussed the current challenges and future perspectives of actively targeted aptamers for clinical application. In conclusion, this review may hold a great promise for development of aptamer-based therapeutic platforms in clinical trials.  相似文献   

10.
The aim of the present work is to design, develop and characterize biodegradable polymeric nanoparticles having well defined size and porous morphology. Poly(dl-lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) nanoparticles (NPs) were prepared by double emulsion method with subsequent solvent evaporation. NPs were characterized by electron microscopes, dynamic light scattering, XRD and thermal properties by differential scanning calorimetry and thermogravimetry. Finally, the in vitro degradation analysis was also performed. Biodegradable NPs display a spherical surface structure with a homogeneous size distribution, and an average diameter of 180 nm for PLLA and 218 nm for the PLGA. The NP nanoporous structure was analyzed by an innovative thermal method: thermoporosimetry, providing information about nanopore dimensions. In vitro degradation studies demonstrate the gradual surface aggregation and degradation of NPs and the effects on polymer properties. Biopolymeric porous nano-systems may offer promise properties for revolutionary improvements in tissue engineering, diagnosis and targeted drug delivery systems.  相似文献   

11.
Nanotechnology and biomedical sciences open the door to a wide range of biological research topics and medical applications at the molecular and cellular levels. Biosynthesis of nanoparticles has been proposed as a cost-effective and environmentally friendly alternative to chemical and physical methods. Plant-mediated synthesis of nanoparticles is a green chemistry approach that connects nanotechnology with plants. Novel methods of ideally synthesizing NPs are thus proposed that are formed at ambient temperatures, neutral pH, low costs and in an environmentally friendly fashion. The goal of the current study is to examine the cytotoxic activity of hydroxyapatite nanoparticles in various kinds of human cancer cells and potential mechanisms at play. Hydroxyapatite nanoparticles were created by the sol–gel method using lemon extract as a capping and reducing agent to achieve environmentally friendly synthesis. The synthesized nanoparticles were characterized by XRD, SEM, FTIR, TGA, VSM and HRTEM. They were tested for cytotoxicity against T98 and SH-SY5Y, two human cancer cell lines. The synthesized nanostructures significantly caused in vitro cell death in cancer cells. The results confirmed that synthesized nanoparticles significantly decreased the percentage of cells that survived. Nevertheless, it is essential to perform more investigations to find out the exact mechanisms involved. Binding energy of Hydroxyapatite- SH-S5YS complex and Hydroxyapatite- T98 complex calculated by molecular docking. However, it is essential to perform more investigations to find the underlying mechanisms.  相似文献   

12.
Core–shell nanoparticles containing plasmonic metals(Ag or Au) have been frequently reported to enhance performance of photo-electrochemical(PEC) devices. However, the stability of these particles in water-splitting conditions is usually not addressed. In this study we demonstrate that Ag@SiO_2 core–shell particles are instable in the acidic conditions in which WO_3-based PEC cells typically operate, Ag in the core being prone to oxidation, even if the SiO_2 shell has a thickness in the order of 10 nm. This is evident from in situ voltammetry studies of several anode composites. Similar to the results of the PEC experiments, the Ag@SiO_2 core–shell particles are instable in slurry-based, Pt/ZnO induced photocatalytic water-splitting. This was evidenced by in situ photodeposition of Ag nanoparticles on the Pt-loaded ZnO catalyst, observed in TEM micrographs obtained after reaction. We explain the instability of Ag@SiO_2 by OH-radical induced oxidation of Ag, yielding dissolved Ag+. Our results imply that a decrease in shell permeability for OH-radicals is necessary to obtain stable, Ag-based plasmonic entities in photo-electrochemical and photocatalytic water splitting.  相似文献   

13.
We have synthesized and characterized Ag NPs decked GO composite and studied its role as reusable catalyst for the ‘ON WATER’ chemoselective synthesis of pyranodipyrazolones via the reaction of different carbonyl compounds with 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one. This method illustrates significant selectivity for pyranodipyrazolones over arylmethylene bispyrazolols and arylmethylenepyrazolones. Synergistic effect of heterogenic nature of water with reactants and Ag NPs/GO had profuse outcome on reaction as indicated by high TOF (18.03 × 10?5 mol g?1 min?1). Furthermore, catalyst was recycled for 7-times without significant loss of activity.  相似文献   

14.
Silver nanoparticles (Ag NPs) are fabricated through γ-irradiation reduction of silver ions in aqueous starch solutions. The UV–vis analyses show smaller sizes of Ag NPs produced, with higher yields, as the irradiation doses and/or Ag+ concentrations are increased. Higher concentrations of starch enhance the yields of Ag NPs, with no significant effects on their size. The most economical Ag NPs are produced at 5 kGy γ-irradiation of a 2×10−3 M solution of AgNO3 containing 0.5% starch. They show a relatively narrow size distribution, indicated by TEM and its corresponding size distribution histogram. The XRD pattern confirms the face-centered cubic (fcc) Ag NPs embedded in starch molecules. Interactions between these nanoparticle surfaces and starch oxygen atoms are indicated by FT–IR. Antibacterial activities of Ag NPs against Escherichia coli appear dependent on the γ-ray doses applied.  相似文献   

15.
Ag, Cu metallic and bimetallic nanoparticles (NPs) with diverse compositions were efficiently synthesized using the fruit latex of Achras sapota Linn. Spectroscopic and cyclic voltammetry results suggested that reduction of Ag was assisted by ascorbic acid, reducing sugars and other phenolic compounds present in the latex. However, the reduction of Cu and alloy NPs required additional ascorbic acid. Comparative in vitro toxicity of as synthesized nanoparticle solution was assessed in 3T3L1 cells using MTT assay and fluorescent microscopy. A minimal impact was observed on cell viability and morphology during 72 h. This demonstrates great potential for use in biomedical applications such as cellular imaging or photothermal therapy.  相似文献   

16.
Herein, we report a rapid and facile fabrication of Ag/C hybrid by anchoring Ag nanoparticles in amorphous carbon network for application in amperometric sensing of hydrogen peroxide. Ag/C hybrid was prepared by simply mixing silver nitrate aqueous solution with ethylene glycol and diphosphorus pentoxide in one step at room temperature. The embedding of Ag nanoparticles into the amorphous carbon support can greatly strengthen the stability of Ag nanoparticles, protecting them from oxidizing without loss of conductivity. The nanocomposite was investigated by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction technique, X-ray photoelectron spectroscopy and electrochemical measurements. The prepared Ag/C hybrid was fabricated onto the surface of glassy carbon electrode to investigate the sensing property towards hydrogen peroxide. The fabricated electrochemical sensor can determine hydrogen peroxide with a detection limit of 0.1 μM and up to 5.5 mM.  相似文献   

17.
Among different metallic nanoparticles, sliver nanoparticles (Ag NPs) are one of the most essential and fascinating nanomaterials. Importantly, among the metal based nanoparticles, Ag NPs play a key role in various fields such as biomedicine, biosensors, catalysis, pharmaceuticals, nanoscience and nanotechnology, particularly in nanomedicine. A main concern about the chemical synthesis of Ag NPs is the production of hazardous chemicals and toxic wastes. To overcome this problem, many research studies have been carried out on the green synthesis of Ag NPs using green sources such as plant extracts, microorganisms and some biopolymers without formation of hazardous wastes. Among green sources, plants could be remarkably valuable to exploring the biosynthesis of Ag NPs. In this review, the green synthesis of Ag‐based nanocatalysts such as Ag NPs, AgPd NPs, Au?Ag NPs, Ag/AgPd NPs, Ag/Cu NPs, Ag@AgCl NPs, Au?Ag@AgCl nanocomposite, Ag?Cr‐AC nanocomposite and Ag NPs immobilized on various supports such as Natrolite zeolite, bone, ZnO, seashell, hazelnut shell, almond shell, SnO2, perlite, ZrO2, TiO2, α‐Al2O3, CeO2, reduced graphene oxide (rGO), h‐Fe2O3@SiO2, and Fe3O4 using numerous plant extracts as reducing and stabilizing agents in the absence of hazardous surfactant and capping agents has been focused. This work describes the state of the art and future challenges in the biosynthesis of Ag‐based nanocatalysts. The fact about the application of living plants in metal nanoparticle (MNPs) industry is that it is a more economical and efficient biosynthesis biosynthetic procedure. In addition, the catalytic activities of the synthesized, Ag‐based recyclable nanocatalysts using various plant extracts in several chemical reactions such as oxidation, reduction, coupling, cycloaddition, cyanation, epoxidation, hydration, degradation and hydrogenation reactions have bben extensively discussed.  相似文献   

18.
We report the synthesis and characterization of SnO2@multiwalled carbon nanotubes (MWCNTs) nanocomposite as a high capacity anode material for sodium-ion battery. SnO2@MWCNT nanocomposite was synthesized by a solvothermal method. SEM and TEM analyses show the uniform distribution of SnO2 nanoparticles on carbon nanotubes. When applied as anode materials in Na-ion batteries, SnO2@MWCNT nanocomposite exhibited a high sodium storage capacity of 839 mAh g 1 in the first cycle. SnO2@MWCNT nanocomposite also demonstrated much better cycling performance than that of bare SnO2 nanoparticles and bare MWCNTs. Furthermore, the nanocomposite electrode also showed a good cyclability and an enhanced Coulombic efficiency on cycling.  相似文献   

19.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

20.
Core/shell bimetallic nanoparticles are highly popular in electrocatalysis; it is argued that the core metal enhances the catalytic properties of the shell. We have investigated the electrocatalytic properties of Au/Ag core‐shell nanorods (Au/Ag NRs) where Ag shell was thinned by aging in the presence of cetyltrimethylammonium bromide. We observed excellent electrocatalysis toward hydrogen peroxide electroreduction upon decreasing the Ag shell thickness, which would, at first, appear to imply a strong synergistic effect of the Au core with the Ag shell for electrocatalysis. We show, however, that this electrocatalysis is not caused by particular Au/Ag core/shell structures but rather by the presence of residual silver impurities in the form of Ag nanoparticles (Ag NPs) formed during the preparation of the thin‐layer silver shell/gold core nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号