首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid solutions in the system zinc sulfide/zinc phosphide (Zn(2+)(x)S(2-2xP(2x)) were investigated using the cyclic cluster model within the semiempirical MSINDO method. Results of cyclic cluster calculations for binding energies of the perfect ZnS and Zn(3)P(2) are presented and compared with the experimental data. The miscibility of ZnS and Zn(3)P(2) over the whole composition range of 0 < x < 1 was investigated by calculating the Gibbs free energy of mixing Delta(M)G for different values of x. A miscibility gap was found at both ends of the composition range and compared with experimental data.  相似文献   

2.
Ratiometric imaging is a technique to reduce artifacts by minimizing the influence of extraneous factors on the fluorescence of a sensor and is particularly useful for cellular imaging studies. Here we characterized the iminocoumarin fluorophore as a new scaffold for sensors for ratiometric imaging. The iminocoumarin 4 showed a high quantum yield in aqueous media on excitation in the visible wavelength region, while its coumarin analogue showed little fluorescence. We therefore developed a novel fluorescence probe, ZnIC, for ratiometric imaging of Zn2+, using iminocoumarin as a fluorophore and (ethylamino)dipicolylamine as a Zn2+ chelator. ZnIC exhibited almost the same fluorescence properties as 4, and the emission spectrum of this probe was red-shifted on addition of Zn2+ under physiological conditions. ZnIC is selective for Zn2+ over other biologically important metal ions, such as Ca2+ and Mg2+, and has high affinity for Zn2+. To confirm the suitability of ZnIC for biological applications, we employed it for the ratiometric detection of changes in intracellular Zn2+ in cultured cells and in rat hippocampal slices. The results indicate that iminocoumarin is a useful fluorophore for fluorescence microscopic imaging and that ZnIC should be useful for studies on the biological functions of Zn2+.  相似文献   

3.
A novel Zn2+-selective visible wavelength fluoroionophore (FluoZin-3, 9) was synthesized. The chelating portion of the molecule resembles known EGTA-based Ca2+-selective fluoroionophores, except that one of the N-acetic acid moieties has been deleted in 9. FluoZin-3 is virtually non-fluorescent in the absence of Zn2+, and exhibits a several hundred-fold fluorescence increase upon saturation with Zn2+( approximately 100 nM), with a Kd = 15 +/- 2 nM. A 1:1 binding stoichiometry of 9:Zn2+ was determined, and the fluorescence of the complex is pH-independent at pH > 6. FluoZin-3 was used to monitor Zn2+ that was co-secreted with insulin from pancreatic beta-cells by exocytosis following stimulation with glucose. The total Zn2+ concentration near the cells reached 600 nM, and Zn2+ was detectable at least 15 mum away from secreting cells. Heterogeneity in secretion among cells was indicated in that some cells in a cluster did not release Zn2+. Also, within secreting cells some regions of the cell membrane gave rise to secretion while others did not, suggesting active zones of secretion on the cell surface.  相似文献   

4.
Zinc-phosphite and -phosphate based microporous materials are crystalline open framework materials with potential industrial applications. Although (31)P MAS NMR has been used for characterization of these materials, the local environments around zinc centres have never been directly probed by solid-state NMR due to the many unfavourable NMR characteristics of (67)Zn. In this work, we have characterized the local structure around the Zn centres in several representative microporous zinc phosphites and zinc phosphates by acquiring natural abundance (67)Zn solid-state NMR spectra at ultrahigh magnetic field of 21.1 T. The observed line-shapes are mainly determined by the second order quadrupolar interaction. The NMR tensor parameters were extracted from the spectra and are related to the local geometry around the Zn centre. Computational study of the electric field gradient (EFG) tensor at Zn was performed using hybrid density functional theory (DFT) calculations at B3LYP level of theory on model clusters. The calculations using Projector Augmented-Wave (PAW) method were also carried out with the CASTEP code wherever it was possible. The work has shown that it is possible to study Zn environments in porous materials which often have very low Zn concentration by natural abundance (67)Zn SSNMR at very high magnetic fields.  相似文献   

5.
Liu XG  Bao SS  Li YZ  Zheng LM 《Inorganic chemistry》2008,47(13):5525-5527
This paper reports four homochiral zinc phosphonates, alpha-(S)-[Zn 2(pemp)(pempH)Cl] (1), alpha-(R)-[Zn 2(pemp)(pempH)Cl] (2), beta-(S)-[Zn 2(pemp)(pempH)Cl] (3), and beta-(R)-[Zn 2(pemp)(pempH)Cl] (4) [pempH 2 = (1-phenylethyl)amino]methylphosphonic acid]. Both 1 and 2 are enantiomers, crystallizing in an orthorhombic P2(1)2(1)2(1) space group, while 3 and 4 are polymorphic phases of 1 and 2, respectively, crystallizing in a monoclinic P2(1) space group. The polymorphism is induced by temperature or additional organic molecules.  相似文献   

6.
TADDOL (alpha,alpha,alpha',alpha'-Tetraaryl-2,2-dimethyl-1,3-dioxolane-4,5-dimethanol) and its derivatives have been used as a chiral auxiliary in a huge number of enantioselective syntheses mediated by transition metals. Herein we report for the first time on the synthesis and structural characterization of Zn-TADDOLate complexes. The homo trinuclear zinc complex, [Me2Zn3{(S,S)-TADDOLate}2(THF)2], was obtained by reaction of TADDOL with dimethylzinc, whereas the hetero trinuclear complex, [Li2Zn{(S,S)-TADDOLate}2(THF)2], was synthesized from dilithium TADDOLate with zinc dichloride. Both structures reveal a non-linear trimetallic M...Zn...M setup, which is surrounded by two TADDOLate ligands.  相似文献   

7.
A procedure of pre-irradiation concentration of zinc in fecal samples using anion exchanger was developed for the study of the bioavailability of zinc by neutron activation analysis. The mass ratios between70Zn and68Zn, or64Zn and their contents between natural zinc and enriched zinc are used to calculate the bioavailability of zinc when the abundance of the isotope70Zn is not high ehough.  相似文献   

8.
Zinc (Zn) is a trace element that is, as a building block in various enzymes, of vital importance for all living organisms. Zn concentrations are widely determined in dietary, biological and environmental studies. Recent papers report on the first efforts to use stable Zn isotopes in environmental studies, and initial results point to significant Zn isotope fractionation during various biological and chemical processes, and thus highlight their potential as valuable biogeochemical tracers. In this article, we discuss the state-of-the-art analytical methods for isotopic analysis of Zn and the procedures used to obtain accurate Zn isotope ratio results. We then review recent applications of Zn isotope measurements in environmental and life sciences, emphasizing the mechanisms and causes responsible for observed natural variation in the isotopic composition of Zn. We first discuss the Zn isotope variability in extraterrestrial and geological samples. We then focus on biological processes inducing Zn isotope fractionation in plants, animals and humans, and we assess the potential of Zn isotope ratio determination for elucidating sources of atmospheric particles and contamination. Finally, we discuss possible impediments and limitations of the application of Zn isotopes in (geo-) environmental studies and provide an outlook regarding future directions of Zn isotope research.  相似文献   

9.
Optical properties of cation-substituted zinc oxide   总被引:1,自引:0,他引:1  
Kim YI  Seshadri R 《Inorganic chemistry》2008,47(19):8437-8443
Zinc oxide (ZnO)-based optoelectronics has emerged as a frontier area in semiconductor research in recent years. In the design of ZnO-based optoelectronic devices, cation-substituted ZnO serves as essential components for the desired device functions. Band-gap engineering by cation substitution enables the facile preparation of barrier layers and quantum wells in device structures. Wurtzite solid solutions Zn 1- x Mg x O, Zn 1- x Cd x O, and Zn 1- x Be x O have been reported as examples where band gaps are gradually modulated as functions of x. In this contribution, we present an overview of composition-dependent band-gap variations of Zn 1- x M x O solid solutions. In addition, we describe the optical properties and microstructural evolution in polycrystalline Zn 1- x Mg x O (0 相似文献   

10.
Zn2+ release from Zn and ZnO particles with different sizes in simulated uterine solution were investigated by absorbance measurements. The effects of pH and human serum albumin (HSA) on Zn2+ release were also studied. The morphology of Zn and ZnO particles was observed by scanning electron microscopy, and the corrosion products of zinc nanoparticles were analyzed by XRD. The results indicate that the maximum release ratios of Zn2+ from Zn and ZnO nanoparticles are higher than those from Zn and ZnO microparticles. Zn2+ release ratio depends not only on the pH of the simulated uterine solution but also the presence of human serum albumin. It decreases as the pH of the uterine solution increases. The trends of Zn2+ release ratios are almost the opposite for solutions with and without HSA. XRD analysis results indicate that zinc oxide is the main corrosion product of zinc particles.  相似文献   

11.
Zn(2+) is a necessary cofactor for thousands of mammalian proteins. Research has suggested that transient fluxes of cellular Zn(2+) are also involved in processes such as apoptosis. Observations of Zn(2+) trafficking have been collected using Zn(2+) responsive fluorescent dyes. A commonly used Zn(2+) fluorophore is 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ). The chemical species responsible for TSQ's observed fluorescence in resting or activated cells have not been characterized. Parallel fluorescence microscopy and spectrofluorometry of LLC-PK(1) cells incubated with TSQ demonstrated punctate staining that concentrated around the nucleus and was characterized by an emission maximum near 470 nm. Addition of cell permeable Zn-pyrithione resulted in greatly increased, diffuse fluorescence that shifted the emission peak to 490 nm, indicative of the formation of Zn(TSQ)(2). TPEN (N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine), a cell permeant Zn(2+) chelator, largely quenched TSQ fluorescence returning the residual fluorescence to the 470 nm emission maximum. Gel filtration chromatography of cell supernatant from LLC-PK(1) cells treated with TSQ revealed that TSQ fluorescence (470 nm emission) eluted with the proteome fractions. Similarly, addition of TSQ to proteome prior to chromatography resulted in 470 nm fluorescence emission that was not observed in smaller molecular weight fractions. It is hypothesized that Zn-TSQ fluorescence, blue-shifted from the 490 nm emission maximum of Zn(TSQ)(2), results from ternary complex, TSQ-Zn-protein formation. As an example, Zn-carbonic anhydrase formed a ternary adduct with TSQ characterized by a fluorescence emission maximum of 470 nm and a dissociation constant of 1.55 × 10(-7) M. Quantification of TSQ-Zn-proteome fluorescence indicated that approximately 8% of cellular Zn(2+) was imaged by TSQ. These results were generalized to other cell types and model Zn-proteins.  相似文献   

12.
Voltammetric studies revealed that under transient conditions in the pH range 3.7 to 5.0, the deposition of zinc from ZnSO4 solutions involves the formation of adsorbed monovalent zinc. The conversion of divalent zinc to monovalent is a slow step. In the presence of gluconate, the reduction of divalent complex involves the monovalent zinc complex and the second electron transfer is slow. In the pH range 10 to 12.5, the zinc complex may be [(Zn(GH4)4]2- and is found to vary with gluconate and OH- ions. The conversion of [Zn(GH4)(OH)abs -] to Zn(OH)2 or Zn(GH4)2 is the slow step in the reduction of the complexes. In strong alkali solutions sodium gluconate forms zinc hydroxy gluconate complexes. [Zn(OH)3(GH4)]2- to adsorbed [Zn(OH)(GH4)]- is the slow step in the reduction.  相似文献   

13.
A new procedure developed for the synthesis and crystallization of various zinc(II) fumarate hydrate coordination polymers is described. In the first step, anhydrous Zn(II) fumarate, [Zn(C4H2O4)] (1), is synthesized from Zn(II) acetate and fumaric acid in methanol. Subsequently, this product is used as a starting material for growing small crystals of bis–aqua Zn(II) fumarate, [Zn(H2O)2(C4H2O4)] (2), triaqua Zn(II) fumarate monohydrate, [Zn(H2O)3(C4H2O4)]·H2O (3), tetraaqua Zn(II) fumarate, [Zn(H2O)4(C4H2O4)] (4), and tetraaqua Zn(II) fumarate monohydrate, [Zn(H2O)4(C4H2O4)]·H2O (5). All structures were determined or redetermined by X-ray structure analyses. The hitherto unknown compound 3 exhibits a zig-zag chain structure with five-coordinate Zn(II) ions.  相似文献   

14.
Attempts to produce Zn analogues of the structural model complexes [M2(mu-O2CR)2(O2CR)2(mu-H2O)(tmen)2] (M = Ni, Co, Mn; R = CH(3), C(CH3)3, CF3) by the reaction of a series of zinc carboxylates with N,N,N',N'-tetramethylethylenediamine (tmen), resulted in the mononuclear complexes [Zn(OAc)(2)(tmen)] (1) and [Zn(crot)2(tmen)].(0.5)H2O (2) for R = CH3 and (CH)2CH3, respectively, and the dinuclear complexes [Zn(2)(mu-piv)(2)(piv)(2)(mu-H2O)(tmen)2] (3) and [Zn2(mu-OAc(F))2(OAc(F))2(mu-H2O)(tmen)2] (4) for R = C(CH3)3 and CF3, respectively. In contrast to the analogous imidazole series, i.e., [M2(mu-O2CR)2(O2CR)2(mu-H2O)(Im)4] (M = Ni, Co, Mn; R = CH3, C(CH3)3, CF3), zinc carboxylates react with imidazole to give only the mononuclear complexes [Zn(OAc)2(Im)2] (5), [Zn(crot)2(Im)2].H2O (6), [Zn(piv)2(Im)2].(0.5)H2O (7), and [Zn(OAc(F))2(Im)2] (8). Reaction of 1, 2, and 3 with either acetohydroxamic acid (AHA) or benzohydroxamic acid (BHA) gives the dinuclear complexes [Zn2(O2CR)3(R'A)(tmen)], where R'A = acetohydroxamate (AA) (9, 10, 11) or benzohydroxamate (BA) (13, 14, 15). In these complexes, the zinc atoms are bridged by a single hydroxamate and two carboxylates, with a capping tmen ligand on one zinc and a monodentate carboxylate bonded to the second zinc atom. This composition models closely the observed structure of the active site of the p-iodo-d-phenylalanine hydroxamic acid inhibited Aeromonas proteolyticaaminopeptidase enzyme. In contrast, 4 reacts with AHA to give [Zn2(OAc(F))3(tmen)2(AA)] (12) with an additional tmen ligand so that both Zn atoms are 6-coordinate, whereas reaction with BHA gives the trinuclear complex [Zn3(OAc(F))4(tmen)2(BA)2] (16). Reactions of 3 and 4 with glutarodihydroxamic acid (GluH2A2) produce the tetranuclear complexes [Zn4(piv)6(tmen)4(GluA2)] (18) and [Zn4(OAc(F))6(tmen)4(GluA2)] (19).  相似文献   

15.
We report a two-photon probe (SZn-Mito) for mitochondrial zinc ions ([Zn2+]m). This probe shows a 7-fold enhancement of two-photon-excited fluorescence in response to Zn2+ with a dissociation constant (Kd(TP)) of 3.1 ± 0.1 nM and pH insensitivity in the biologically relevant range, allowing the detection of [Zn2+]m in a rat hippocampal slice at a depth of 100?200 μm without interference from other metal ions through the use of two-photon microscopy.  相似文献   

16.
Although the Zn(2+) cation in Zn·Cys(4), Zn·Cys(3)His, Zn·Cys(2)His(2), and Zn(2)Cys(6) cores of zinc finger (Zf) proteins typically plays a structural role, the Zn-bound thiolates in some Zf cores are reactive. Such labile Zf cores can serve as drug targets for retroviral or cancer therapies. Previous studies showed that the reactivity of a Zn-bound thiolate toward electrophiles is significantly reduced if it forms S---NH hydrogen bonds with the backbone amide. However, we found several well-known inactive Zf cores containing Cys ligands with no H-bonding interactions. Here, we show that H bonds from the peptide backbone or bonds from a second Zn cation to Zn-bound S atoms suppress the reactivity not only of these S atoms, but also of Zn-bound S* atoms with no interactions. Indeed, two or more indirect NH---S hydrogen bonds raise the free energy barrier for methylation of a Zn-bound S* in a Cys(4) core more than a direct NH---S* hydrogen bond. These findings help to elucidate why several well-known Zf cores have Cys ligands with no H bonds, but are unreactive. They also help to provide guidelines for distinguishing labile Cys-rich Zn sites from structural ones, which in turn help to identify novel potential Zf drug targets.  相似文献   

17.
8-Hydroxyquinoline derivative 1 as a fluorescent chemosensor for Zn2+ was synthesized. Because Cd2+ is often found with Zn2+ in the environment and can form fluorescent complexes with chelating fluorophores, a potentially important property of chemosensors for Zn2+ is their selectivity for Zn2+ over Cd2+. The Zn2+ or Cd2+ complexes of 1 gave an emission band from the 1:1 complex, but the fluorescence intensity for Cd2+ was a half of that for Zn2+. Ligand 1 is suited for use as a fluorescent chemosensor for Zn2+.  相似文献   

18.
Evidence is growing that the range of zinc stable isotope compositions, represented by the deviation of 66Zn in permil units relative to a standard and expressed as δ66Zn, is larger in organic matter than in inorganic material. This study reports the variations of δ66Zn in various organs of sheep raised on a controlled diet. Zinc was purified by anion‐exchange chromatography. The Zn concentrations and Zn stable isotope compositions were determined by quadrupole inductively coupled plasma mass spectrometry and multi‐collector inductively coupled plasma mass spectrometry, respectively. The data show that δ66Zn variability exceeds 1‰, with bone, muscle, serum and urine enriched in the heavy isotopes, and feces, red blood cells, kidney and liver enriched in light isotopes, all relative to the diet value. The 66Zn enrichment of the circulating serum reservoir is likely to take place in the digestive tract, probably through the preferential binding of lighter isotopes with phytic acid, which is known to control the uptake of metallic elements. Mass balance calculations suggest that the 66Zn depletion between diet and feces, which is not balanced by any other outward flux, leads to a secular isotopic drift in serum. A simple time‐dependent two‐box model, involving the gastro‐intestinal tract on the one hand and the muscle and bone on the other, predicts that the maximum 66Zn enrichment, which equals the difference in δ66Zn between diet and bulk (~0.25‰), is reached after about ten years. Therefore, a better understanding of the variations of natural abundance of Zn isotopes in animals and humans will probably bring new perspectives for the assessment of their Zn status. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The commonly used Zn(2+) sensors 6-methoxy-8-p-toluenesulfonamidoquinoline (TSQ) and Zinquin have been shown to image zinc proteins as a result of the formation of sensor-zinc-protein ternary adducts not Zn(TSQ)(2) or Zn(Zinquin)(2) complexes. The powerful, cell-permeant chelating agent N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) is also used in conjunction with these and other Zn(2+) sensors to validate that the observed fluorescence enhancement seen with the sensors depends on intracellular interaction with Zn(2+). We demonstrated that the kinetics of the reaction of TPEN with cells pretreated with TSQ or Zinquin was not consistent with its reaction with Zn(TSQ)(2) or Zn(Zinquin)(2). Instead, TPEN and other chelating agents extract between 25 and 35% of the Zn(2+) bound to the proteome, including zinc(2+) from zinc metallothionein, and thereby quench some, but not all, of the sensor-zinc-protein fluorescence. Another mechanism in which TPEN exchanges with TSQ or Zinquin to form TPEN-zinc-protein adducts found support in the reactions of TPEN with Zinquin-zinc-alcohol dehydrogenase. TPEN also removed one of the two Zn(2+) ions per monomer from zinc-alcohol dehydrogenase and zinc-alkaline phosphatase, consistent with its ligand substitution reactivity with the zinc proteome.  相似文献   

20.
A new process of leaching zinc oxide dust by ozone oxidation in a sulfuric acid system was studied. The main factors affecting the leaching rate, such as ozone time, leaching temperature, initial acidity, leaching time, and liquid/solid mass ratio, were comprehensively investigated. The results show that leaching efficiency depends on all the above factors. The optimum conditions for leaching Zn and Ge from zinc oxide dust are as follows: ozone time 10 min, leaching temperature 90 ℃, initial acidity 160 g/L, leaching time 60 min, and liquid/solid mass ratio 7:1. Under the optimum conditions, the leaching rates of Zn and Ge are 95.79% and 93.65%, respectively. The leaching rates of zinc and germanium in the ozone leaching are 4.05% and 10.49% higher than those of the atmospheric leaching, respectively. Therefore, it is determined that ozone in solution plays a key role in rapidly oxidizing sulfide and releasing encapsulated germanium. Sulfuric acid-ozone media can efficiently extract Zn and Ge from zinc oxide dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号