首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Psidium guajava L., commonly known as guava is an important tropical food plant with diverse medicinal values. In traditional medicine, it is used in the treatment of various diseases such as diarrhoea, diabetes, rheumatism, ulcers, malaria, cough, and bacterial infections. The aim of this review is to provide up-to-date information on the ethnomedicinal uses, bioactive compounds, and pharmacological activities of P. guajava with greater emphasis on its therapeutic potentials. The bioactive constituents extracted from P. guajava include phytochemicals (gallic acid, casuariin, catechin, chlorogenic acid, rutin, vanillic acid, quercetin, syringic acid, kaempferol, apigenin, cinnamic acid, luteolin, quercetin-3-O-α-L-arabinopyranoside, morin, ellagic acid, guaijaverin, pedunculoside, asiastic acid, ursolic acid, oleanolic acid, methyl gallate and epicatechin) and essential oils (limonene, trans-caryophyllene, α-humulene, γ-muurolene, selinene, caryophyllene oxide, bisabolol, isocaryophyllene, δ-cadinene, α-copaene, α-cedrene, β-eudesmol, α-pinene, β-pinene, β-myrcene, linalool, α-terpineol and eucalyptol). In vitro and in vivo studies demonstrated that P. guajava possesses pharmacological activities such as antidiabetic, antidiarrhoeal, hepatoprotective, anticancer, antioxidant, anti-inflammatory, antiestrogenic, and antibacterial activities which support its traditional uses. The exhibited pharmacological activities reported may be attributed to the numerous bioactive compounds present in different parts of P. guajava. Based on the beneficial effects of P. guajava as well as its bioactive constituents, it can be exploited in the development of pharmaceutical products and functional foods. However, there is a need for comprehensive studies in clinical trials to establish the safe doses and efficacy of P. guajava for the treatment of several diseases.  相似文献   

2.
Heterocyclic compounds occupy an important position in chemistry because of their wide range of uses in drug design, photochemistry, agrochemicals, and other fields. Indole and indazole scaffolds are available from natural and synthetic sources, and molecules containing these scaffolds have been shown to have various biological effects, including anti-inflammatory, antibacterial, antiviral, antifungal, analgesic, anticancer, antioxidant, anticonvulsant, antidepressant, and antihypertensive activities. Indole and indazole molecules bind to receptors with high affinity, and thus are useful for the study of bioactive compounds involved in multiple pathways. In this review, we highlight the antihypertensive activity and the mechanisms of action of indole and indazole derivatives. In addition, structure–activity relationship studies of the antihypertensive effect are presented.  相似文献   

3.
4.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

6.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

7.
Vitellaria paradoxa Gaertn. is a multipurpose medicinal plant of the family Sapotaceae, and it has been widely used usually in the clinical traditional medicine as remedy for a wide range of diseases for several decades. In addition, the plant has also found applications in confectionery, cosmetics and soaps, and pharmaceuticals both locally and internationally. V. paradoxa, which has been identified with >150 phytoconstituents, is rich in oleanane-type triterpene acids and glycosides, such as paradoxosides A-E, tieghemelin A, parkiosides A-C, bassic acid, as well as flavonoids such as quercetin and catechin-type compounds. The extracts and the active constituents of V. paradoxa have been investigated for various pharmacological activities, including but not limited to anticancer, melanogenesis-inhibitory, antibacterial, anti-diabetic, antioxidant, anti-inflammatory, anti-diarrhoeal, and antifungal activities. Additionally, V. paradoxa has also been utilized in nanoparticles (NPs) synthesis. These NPs among other things have shown significant antinociceptive and antiedematogenic activities as well as environmental friendly adsorptive properties for the removal of pollutants from pharmaceutical effluents. Overall, this review comprehensively examines the traditional uses, phytochemistry, pharmacology, toxicology, clinical studies, and nanoparticles synthesized from V. paradoxa and their applications.  相似文献   

8.
The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract of Cola lateritia K. Schum. (Sterculiaceae) led to the isolation and characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. The compounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone (4), lupeol (5), friedelin (6), β-stigmasterol (7) and ß-sitosterol-3-O-ß-D-glucoside (8). Their structures were determined by NMR analysis (1H, 13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature. This work, to the best of our knowledge, is the first isolation and identification of these compounds in pure forms from Cola lateritia. Also, compounds 13 are reported for the first time from Cola genus. In vitro antibacterial activity of the isolated compounds (18) and the crude extract were evaluated against Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Proteus vulgaris, Klebsiella pneumonia, Escherichia coli, Proteus mirabilis and Klebsiella aerogenes with streptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound 2 was active against E. faecalis (MIC = 18.5 µg/mL), and it was 6.9 and 28 times lower and active than that of streptomycin (MIC 128 µg/mL) and nalidixic acid (MIC > 512 µg/mL) respectively. All the isolated compounds and crude extract showed significant activities against the tested bacterial strains.  相似文献   

9.
Carapa guianensis is a tree from Meliaceae family traditionally known as andiroba that has a wide range of biological properties, including therapeutic effects, antioxidant activities, insecticidal and repellent effects that can be used in biotechnological approaches to medicine, agriculture, and cosmetic products. Therefore, we aim to explore the biological activities exhibited by this species and their respective biotechnological applications of interest. For this, a systematic review was carried out following the PRISMA guidelines dated from 1993 to 2022 through the Scopus, Web of Science and Agricultural Research Database (Base de Dados da Pesquisa Agropecuária - BDPA), screened for biological activity/bioactive compounds. A total of 129 studies were included in the PRISMA flow analysis. Biological properties and major bioactive compounds, as well as biotechnological approaches could be identified. The biological activity from C. guianensis could be observed in different vegetative parts through diverse methods of extractions. These activities are mainly due to the unsaturated fatty acids and bioactive compounds, such as the limonoids and a small fraction of phenolic compounds. Gedunin-type limonoids, like gedunin and its derivatives, represent the class of compounds that show the highest bioactivities in different applications.  相似文献   

10.
《Arabian Journal of Chemistry》2020,13(11):8133-8145
Humans and animals are frequently exposed to heavy metals in the environment, which are highly toxic to the physiological milieu and organs of the body. We investigated the ameliorative potentials of ethanol leaf extract of Ruspolia hypocrateriformis against redox imbalance due to exposure of rats to heavy metals. The in vitro study explored the antioxidant potentials of the ethanol leaf extract using 1,1-diphenyl-2-picryl hydrazyl, nitric oxide and ferric reducing antioxidant potential assays respectively. HPLC was used to quantify the amount of flavonoids and phenolic acids in the extract. For in vivo study, 30 rats were randomly divided into 5 groups. Group A received normal saline. Group B received combined solution of Lead Nitrate and Mercury Chloride (11.25 mg/kg and 0.4 mg/kg) per Bwt/day. Group C, D and E were administered with the leaf extract at doses of 200, 400 and 600 mg/kg body weight respectively for 28 consecutive days. Biomarkers of hepatic dysfunctions and oxidative stress were investigated in the study rats. The HPLC study revealed high amount of gallic and ferulic acids (17.86 ± 2.68), which are the major phenolic compounds found in the extract. The extract further exhibited high antioxidant potentials in inhibiting the scavenging activity of free radicals produced in vitro. Interestingly, 600 mg/kg dosage of the leaf extract successfully ameliorated the distorted redox imbalance and oxidative damage in the liver of the rats caused by exposure to the heavy metals. Leaf extract of Ruspolia hypocrateriformis demonstrated strong antioxidant potentials, which could be exploited in pharmaceutical preparations.  相似文献   

11.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

12.
Quinoline analogs are an important class of N-based heterocyclic compounds, which have received extensive attention because of their use in medicinal chemistry and organic synthesis. Over the past few decades, several new scaffold-based functionalization synthesis strategies have been reported for quinolines. Quinoline derivatives have a wide range of biological activities, including anti-Alzheimer’s disease activity. Herein, we review research on quinoline and related analogs as anti-Alzheimer’s disease agents from 2001 to 2022 and particularly highlight the structure–activity relationships and molecular binding modes. This review provides information for the rational design of more effective and target-specific drugs for Alzheimer's disease.  相似文献   

13.
Protein hydrolysates have the potential to be natural and safer sources of bioactive peptides. In this study, two proteases were used to hydrolyze Chinese sturgeon (Acipenser sinensis) protein, and the hydrolysates were then purified to yield antioxidant peptides. The degree of hydrolysis of 23.56 % and 18.14 % was obtained using papain and alcalase 2.4L, respectivly, and hydrolysates had 96.80 % and 87.24 % total amino acid content, respectivly. The papain hydrolysate (PH) and alcalase 2.4L hydrolysate (AH) showed good antioxidant activity against DPPH? (IC50 of 3.64 and 3.15 mg/mL) and ABTS?+ (IC50 of 1.92 and 1.58 mg/mL), respectively. The low-molecular-weight (<1000 Da) fraction of both hydrolysates demonstrated the highest antiradical activity (IC50 of 2.59 and 2.31 mg/mL, DPPH) and (IC50 of 1.54 and 1.36 mg/mL, ABTS), respectively. Nine peptides were separated from both hydrolysates using reverse phase high performance liquid chromatography (RP-HPLC). The IC50 for ABTS?+ scavenging activity of peptide P5 with valine, glycine and asparagine (MW of 282.13 Da) from PH, and peptide P3 with histidine, glycine and alanine (MW of 302.74 Da) from AH was 0.89 and 0.72 mg/mL, respectively. The fractions and purified peptides obtained from Chinese sturgeon hydrolysates could be utilized as natural antioxidant substitutes in pharmaceuticals and food products.  相似文献   

14.
For thousands of years Pueraria thomsonii Benth has been used to treat a number of diseases in traditional Chinese pharmacopeia. Despite these uses, there is still insufficient information on its biological activity and chemical composition. In this respect, the in vitro callus culture of P. thomsonii was subjected to identify anticancer and antibacterial compounds. Based on significant preliminary cytotoxicity and antibacterial activities; the chemical investigation led to the isolation of isoflavonoids, coumaric acid derivative and dihydroxyflavanone-type of compounds viz., daidzin (1), puerarin (2), biochanin A (3), daidzein (4), p-coumaric acid ethyl ester (5) and liquiritigenin (6), respectively. These compounds were tested for their cytotoxicity and antibacterial activities. Among them, p-coumaric acid ethyl ester (5) exhibited significant cytotoxicity with GI50 values of 14.73, 15.64 and 20.88 μM/mL against 4T1, NC1-H1975 and A549, respectively; the other isoflavones and aflavonoid showed moderate to weak activities. Moreover, p-coumaric acid ethyl ester (5) inhibited the growth of K. pneumonia, MRSE and MRSA at very low MIC values of 6.01, 12.01 µg/mL 24.02, respectively. On the other hand compounds biochanin A (3) and liquiritigenin (6) showed moderate antibacterial activity. Because of the potential anticancer and antibacterial activities of bioactive compounds from P. thomsonii, they can be used to treat various cancer and emerging bacterial infections.  相似文献   

15.
Dioscorea nipponica Makino exhibits many biological activities, including relieving cough, eliminating phlegm and preventing asthma. The present study extensively evaluated the extraction process, major components, antioxidant, antibacterial and anti-inflammatory activities of total saponins extraction from Dioscorea nipponica Makino. In this study, the optimal extraction process of total saponins extract was optimized by single-factor test and response surface methodology as follows: extraction time 25 min, ethanol concentration 50 % and liquid to material ratio 55:1 ml/g, and the extraction rate was 1.72 %. Eighteen components were initially analyzed by UPLC-QTOF-MS method. Although total saponins extract exhibited mild antibacterial activities against Escherichia coli, Salmonella, Staphylococcus aureus and Streptococcus, and antioxidant activities against ferric-ion, ABTS and DPPH radicals, the perfect anti-inflammatory activity of TSE was demonstrated by significantly reducing the content of NO and the phagocytic activity in LPS induced RAW 264.7 cells, which provided a theoretical basis for the research and development of new anti-inflammatory Chinese medicine.  相似文献   

16.
Purpose of studyDodonaea viscosa Jacq. is an ethnomedicinal plant that has been extensively used for the treatment of gout, rheumatism and pain. Current study was undertaken to mine its antioxidant, antimicrobial, cytotoxic and antidiabetic potential. Chromogenic assays were employed to establish plant’s multimode antioxidant profile whereas HPLC fingerprinting was performed to quantify polyphenols. Standard brine shrimp lethality, MTT and SRB assays proved its cytotoxicity potential.ResultsAmong all the extracts (flower, leaf, stem and root), maximum extract recovery (22% w/w), gallic acid equivalent total phenolic content (20.11 ± 0.11 ug GAE/mg DW), ascorbic acid equivalent total antioxidant capacity (22.5 ± 0.07 µg/mg DW) and total reducing power (31.1 ± 1.13 µg/mg DW) were recorded in the distilled water + acetone extract of leaf. The acetone extract of leaf showed maximum quercetin equivalent total flavonoid content (4.78 ± 0.13 µg/mg DW). HPLC-DAD analysis revealed significant amount of rutin, vanillic acid, coumaric acid, ferulic acid, gallic acid, syringic acid, cinnamic acid, gentisic acid, catechin, caffeic acid, apigenin and myricetin in the different plant parts. Maximum scavenging potential was exhibited by methanol + ethyl acetate stem extract (IC50 = 23.8 µg/ml). The highest antibacterial potential was found in flower (85.7%) and root (71.4%) extracts. The ethanol + ethyl acetate (1:1) leaf extract showed noteworthy toxicity against brine shrimps (LC50 = 95.46 µg/ml) while a notable antiproliferative activity against THP-1 (IC50 = 3.4 µg/ml) and Hep G2 (IC50 = 20 µg/ml) cell lines was shown by ethanol + ethyl acetate extracts (1:1) of stem and root, respectively. A moderate inhibition of α-amylase enzyme was observed in all parts of the plant.ConclusionThe results of the present study suggest D. viscosa as a potential source of antioxidant, anticancer and α-amylase inhibitory phytochemicals.  相似文献   

17.
The chemical investigation of the ethyl acetate extract of the stem bark of Staudtia kamerunensis and sap led to the isolation of six compounds which included three isoflavonoids: biochanin A (1), formononetin (2) and 3-(1,3-benzodioxol-5-yl)-5,6,7-trimethoxy-4H-1-benzopyran-4-one (3), one flavonoid: (-) epicatechin (4) and two pentacyclic triterpenoids (oleanan-12-ene-2α,3β -diol (5) and 2α,3β-dihydroxylup-20-ene (6). They were characterized by HREIMS (High Resolution Electron Ionisation Mass Spectrometry), NMR spectroscopy (1D and 2D) and comparison with existing data in literature. The crude extract and isolates were tested against twelve bacterial strains namely; Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, Proteus mirabilis and Klebsiella pneumonia. Streptomycin, nalidixic acid and ampicillin were used as standard antibacterial drugs. The results revealed significant antibacterial activity for both the ethyl acetate partition and for the tested compounds, with the lowest MIC value being 15.625 μg/mL. A synergistic activity of the isolated triterpenoids was evaluated with interesting results. On a general note, the antibacterial activity of compound 5 was doubled specifically against Gram-negative bacterial strains. This could be a therapeutic antimicrobial pathway in face of the rising bacterial resistance. To the best of our knowledge, it is the first time that flavonoids and triterpenoids are isolated from this genus and species. It is also the first report of antibacterial studies on this species.  相似文献   

18.
Lepidium sativum is cultivated mainly for the edible oil from its seeds, and considered as an unutilized and neglected crop despite its important properties. Its oil fraction is used to produce soap and stabilize linseed oil when it is mixed with wild mustard seed oil. Once converted into fatty acid methyl esters, it represents a good substitute for imported petroleum diesel after alkaline transesterification reaction. In the current study, Lepidium sativum seeds cultivated in Tunisia and the physicochemical properties and nutrient profile of its cold pressed seed oil were investigated. The antioxidant, antibacterial, and anti-inflammatory activities of the above oil were also assessed. Lepidium sativum seed oil was abundant in both linolenic (35.59 ± 1.9%) and oleic (21.14 ± 0.63%) acids, and high amounts of β-sitosterol (42.57 ± 2.96 mg/100 g), campesterol (20.04 ± 1.4 mg/100 g) and Δ 5,24 stigmastadienol (11.82 ± 0.45 mg/100 g) were detected. The total tocopherol content of Lepidium sativum seed oil reached 136.83 ± 7.6 mg/100 g with a predominance of γ-tocopherol (86.23%). Its seed oil exhibited an IC50 of 10.33 ± 0.05 mg/mL and a radical scavenging activity of 415.6 ± 40 Trolox Equivalent Antioxidant Capacity (TEAC) for the DPPH and the ABTS assays, respectively. While the thermal analysis proved a high thermal stability of Lepidium sativum seed oil, that of eight bacteria and one fungal strain showed no noticeable bacterial or antifungal effects. It was also revealed that Lepidium sativum seed oil held a remarkable anti-inflammatory activity. Hence, the obtained results evidenced remarkable chemical, antioxidant and anti-inflammatory properties of Lepidium sativum seed oil, which might potentially be promising for enhancing human health and preventing age-related diseases.  相似文献   

19.
The pitangueira (Eugenia uniflora) is a tree native to Brazil but is cultivated in several subtropical countries. A great diversity of nutrients and bioactive compounds have been found in the leaves and fruits of E. uniflora, which supports its use in folk medicine to treat diseases such as stomach and intestinal disorders, fever and general inflammation. Antimicrobial, antiviral, antifungal and antioxidant effects on metabolism have been reported for this plant. This review discusses the phytochemical profile, toxicity and pharmacological action of E. uniflora leaves and fruits and points out that gaps in the literature that need to be investigated further. This review also discusses studies developed with E. uniflora demonstrating its promising therapeutic potential for several diseases with an apparent low toxicity in mammals. The compilation of the main pharmacological and toxicological results, as well as the phytochemical characterization of the varieties and constituents of E. uniflora are general aspects that this review attempts to demonstrate in order to contribute to the new approaches and developments to plant-derived natural product drug discovery. However, further studies are required to establish the nutraceutical effects and uses of E. uniflora as an important and safe supplement for human health.  相似文献   

20.
Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz is a arboreal species found in the Caatinga from Northeast of Brazil that has been used in popular medicine as an anti-inflammatory, healing, analgesic and for the treatment of respiratory system disorders. Therefore, the objective of this work was to evaluate the composition of ethanol extracts from the leaves and inner bark of Libidibia ferrea, as well as to verify its antibacterial activity and as a potential inhibitor of the TetK efflux pump in Staphylococcus aureus strains, in addition to investigating the toxicity of the extracts in a Drosophila melanogaster model. The analysis and quantification of the extracts markers was performed by High Performance Liquid Chromatography (HPLC). To determine the Minimum Inhibitory Concentration (MIC) broth microdilution tests were carried out. The evaluation of efflux pump inhibition was performed by modifying the MIC of antibiotics and ethidium bromide. Mortality and negative geotaxis tests were used to verify the toxicity of extracts on D. melanogaster. Hydrolysable tannins (gallic acid and ellagic acid) and flavonoids were found in HPLC analysis. The extracts did not show antibacterial activity, demonstrating a MIC ≥ 1024 µg/mL, however the ethanolic extract of the leaves decreased the MIC of the antibiotic from 64 µg/mL to 16 µg/mL, but this effect is not associated with the inhibition of the efflux pump. The extracts did not show toxicity in a D. melanogaster model. This is the first study to evaluate the antibacterial activity of L. ferrea extracts on the IS-58 strain of S. aureus, as well as the first to investigate its toxicity using D. melanogaster. From the results, further studies are needed to determine the mechanisms of action of the extract with other antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号