首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Heavy metals (HMs), pollution of major environmental matrices and its attendant effects on human health and the environment, continue to generate huge scientific interest, particularly in monitoring and detection. Herein, the optical property of carboxymethyl cellulose stabilized silver nanoparticles (CMC-AgNPs), supported with ascorbic acid, is exploited as a colorimetric probe for the detection of toxic Au3+ ion in solution. The as-synthesized CMC-AgNPs showed sharp absorption maximum at 403 nm, with sparkling yellow color and average particles size distribution less than 10 nm. It was further characterized using ATR-FTIR, TEM, FESEM/EDS, XRD and DLS/zeta potential analyzer. Au3+ ion detection strategy involves the addition of ascorbic acid (AA) to a pH adjusted CMC-AgNPs, followed by the analyte addition. AA would facilitate the reduction of Au3+ on CMC-AgNPs (seed), with resultant color perturbations from light yellow to yellow, orange, ruby red and purple red, under 8 min incubation, at room temperature (RT). The CMC-AgNPs could also serve as a catalyst, by promoting AA mediated reduction of Au3+, in-situ. Moreover, we propose, that the color and the absorption spectra change is attributed to the deposition of gold nanoparticles (AuNPs), on the CMC-AgNPs/AA probe, to form (CMC-Ag@Au) nanostructures, depending on the analyte concentration. Absorbance ratio (A540/A403) showed good linearity with Au3+ concentration from 0.25 to 100.0 µM, and an estimated LOD of 0.061 µM. The assay was applied to Au3+ detection in environmental wastewater sample, showing satisfactory real sample detection potentiality.  相似文献   

2.
Artemisia annua L. (A. annua) has been used as herbal medicine in China for thousands of years for clearing deficiency heat, treating malaria and removing jaundice. A rapid, sensitive and specific liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) method was developed, validated, and successfully used for simultaneous quantification of the active components in rat plasma after oral administration of A. annua extract. Molecular docking of each component with drug metabolizing enzymes was carried out to explore the effect of each component on CYP-mediated drug metabolism. Two coumarins (scopolin (SPL) and scopoletin (SPLT)), three flavonoids (rutin (RUT), chrysosplenol D (CHD), casticin (CAS)) and three sesquiterpenes (arteannuin B (ARN), dihydroartemisinic acid (DARM) and artemisinic acid (ARM)) were detected in rat plasma after oral administration. CHD and CAS were rapidly absorbed into rat blood with the Tmax values of 0.11 ± 0.04 h and 0.13 ± 0.05 h, respectively. Their half-lives (t1/2 2.68 ± 3.62 h and 0.33 ± 0.07 h) were shorter. SPLT were also rapidly absorbed into the blood (Tmax 0.15 ± 0.03 h), but exhibited a longer half-life (t1/2 6.53 ± 1.84 h), indicating that it could be effective in vivo for a longer period of time. The peak time of SPL, RUT, DARM and ARM ranged from 1 ~ 4 h, demonstrating that they could maintain considerable concentrations for a longer time. ARN showed strong enterohepatic circulation in rats, leading to slower onset time and longer effect. A few components including SPLT, CHD, CAS and ARN could be metabolized into their corresponding II phase metabolites combining with glucuronic acid or sulfuric acid. RUT could decompose its glycosyl to generate genin. The molecular docking results indicated that those flavonoids and coumarins of A. annua interacting with CYPs mainly through hydrogen bonding and π-π stacking had better CYP450 enzyme binding ability than the sesquiterpenoids, which were easier to induce drug interactions. This study presented an integrated strategy for investigating the pharmacokinetic behaviors of eight components in A. annua and laid the foundation for revealing the mechanism of action of A. annua in the organism.  相似文献   

3.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

5.
A novel series of isatin hybrids 5a-g was designed, synthesized, and characterized spectroscopically. The synthesized compounds were evaluated for their cytotoxic activity against the human breast cancer cell line (MCF-7) by in vitro MTT assay. Amongst the tested compounds, 5e compound bearing benzyl moiety at N4 piperazine was found to be the most active with the promising IC50 (12.47 µM). Moreover, the active compounds 5e and 5g were subjected to antitumor evaluation (in vivo) against Dalton’s ascitic lymphoma (DAL) cell line and the results suggested that the best active compound 5e can normalize the blood picture in comparison to the standard drug. An in silico molecular docking study using the crystal structure of Hsp90 protein described the role of significant protein–ligand interactions and revealed more insights into the binding mode. The drug-likeliness of the compounds was predicted based on Lipinski's rule of five and pharmacokinetic ADME parameters. Hence, the synthesized isatin hybrids could be novel starting point anticancer lead compounds demonstrating drug-like properties which can be explored further for anticancer drug discovery.  相似文献   

6.
7.
Plant bacteria and viruses have a huge negative impact on food crops in the world. Therefore, it is important to create new and efficient green pesticides. In this paper, a series of myricetin derivatives containing quinazolinone sulfide were introduced. Good antibacterial and antiviral activities of the drug molecules 2-((3-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)propyl)thio)-6-fluoro-3-phenylquinazolin-4(3H)-one (T5) and 2-((4-((5,7-dimethoxy-4-oxo-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)butyl)thio)-6-methyl-3-phenylquinazolin-4(3H)-one (T15) respectively were found by biological activity screening. The value of dissociation constant (Kd) of compound T15 to TMV CP was 0.024 ± 0.006 μM, determined by Microscale thermophoresis (MST), which was far less than the value of 8.491 ± 2.027 μM of commercial drug ningnanmycin (NNM). The interaction between compound T15 and TMV CP was further verified by molecular docking. Compound T15 formed strong hydrogen bonds with residues SER:49 and SER:15 (1.92 Å, 2.20 Å, respectively), which were superior to the traditional hydrogen bonds formed by NNM with residue SER:215 (3.64 Å). In addition, the effects of compound T15 on the contents of chlorophyll and peroxidase (POD) in tobacco were studied, and the results indicated that compound T15 could enhance the disease resistance of tobacco plants to a certain extent.  相似文献   

8.
This work investigated the effect of Potassium Permanganate (KMnO4) on graphene oxide (GO) properties, especially on electrical properties. The GO thin films were deposited on a glass substrate using drop casting technique and were analysed by using various type of spectroscopy (e.g. Scanning Electron Microscopy (SEM), Ultra- Violet Visible (UV–VIS), Fourier Transform Infrared (FTIR), X-Ray Diffraction (XRD), optical band gap, Raman Spectroscopy). Furthermore, the electrical experiments were carried out by using current–voltage (I-V) characteristic. The GO thin film with 4.5 g of KMnO4 resulted in higher conductivity which is 3.11 × 10?4 S/cm while GO with 2.5 g and 3.5 g of KMnO4 achieve 2.47 × 10?9 S/cm and 1.07 × 10?7 S/cm, respectively. This further affects the morphological (SEM), optical (band gap, UV–Vis, FTIR, and Raman), and crystalline structural (XRD) properties of the GO thin films. The morphological, elemental, optical, and structural data confirmed that the properties of GO is affected by different amount of KMnO4 oxidizing agent, which revealed that GO can potentially be implemented for electrical and electronic devices.  相似文献   

9.
One of the most common problems in wounds is delayed healing and complications such as infection. Therefore, the need for novel materials accelerates the healing of wounds especially abdominal wounds after surgery besides high efficiency and safety is mandatory. The rate of wound healing, anti-inflammatory and biocompatibility of Zn-Al LDH (Zn-Al layer double hydroxide) alone and loaded with Curcumin (Zn-Al LDH/Curcumin) was screened via in-vivo assays through intramuscular implantation in rat abdominal wall with intact peritoneum cavity. The implanted drugs were formed through Curcumin loaded into LDH of Zn-Al with drug release of 56.78 ± 1.51% within 24 h. The synthesized nanocomposite was characterized by (TGA/DTA) thermal analysis, (XRD) X-ray diffraction, (FESEM) Field emission scanning electron microscopy, (HRTEM) high resolution transmission electron microscope, energy dispersive X-ray (EDX) and low-temperature N2 adsorption, pore volume and average pore size distribution. The integrity of blood circulation, inflammatory signs, wound healing rate, capacity of tissue integration, antigenicity and composite biocompatibility, auto fluorescence ability of collagen bundles and the tensile strength of the muscle were assessed histopathologically after 7 and 30 days’ post-implantation. Excellent wound healing ability was achieved with shortest length between the wound gap edges and higher tensile strength of the muscle. Besides emit florescence very well followed by good healing and tensile muscles strength in Curcumin while very low strength with scar formation in Zn-Al LDH/Curcumin in both acute and chronic wound. No signs of inflammation in Curcumin & Zn-Al LDH. No vessels obstruction or bleeding observed in both Zn-Al LDH and Curcumin more than Zn-Al LDH/Curcumin and control which examined through candling. Good healing & infiltrated immune cells in same groups through histopathological examination. This work supports the anti-inflammatory, wound healing and biocompatibility of both LDH and Curcumin with living matter, increasing their biomedical applications in this era with safety and increasing efficacy with prolonged drug release.  相似文献   

10.
Free radicals, mostly consist of reactive oxygen species, are generated in human body by several exogenous and endogenous systems. Overproduction of free radicals is known to cause several degenerative disorders including cancer. The aim of this study is to synthesize silver nanoparticles (AgNPs) using root extract of Reynoutria japonica and to investigate its antioxidant and cytotoxic potential. AgNPs were synthesized by green approach and subsequently characterized using UV–vis spectroscopy, SEM, TEM, FTIR, XRD, EDS and DLS. The antioxidant activity was investigated using DPPH, FRAP, H2O2, and ABT?+ radical scavenging assays while the cytotoxic effect was assessed using different human cancer cell lines including lung (A549), liver (Hep-G2) and breast (MDA-MB-231) by MTS assay. Moreover, the specificity of NPs was assessed against two normal human cell lines e.g. alveolar and renal primary epithelial cells (HPAEpiC and HRPTEpiC). The UV–vis spectra confirmed the synthesis of AgNPs by producing a characteristic peak at 410 nm. Further analysis confirmed that AgNPs were crystalline in nature, predominantly spherical in shape, with an average width and area of 17.34 nm and 164.46 nm2, respectively. DLS analysis revealed that NPs possess a high negative zeta potential value (?28.5 mV), thus facilitating its electrostatic stabilization. AgNPs showed dose dependent antioxidant activity against DPPH, FRAP, H2O2 and ABTS with IC50 values 19.25, 22.45, 24.20 and 18.88 µg/ml, respectively. The AgNPs depicted significant cytotoxic effects against A549, Hep-G2 and MDA-MB-231 cell lines with IC50 values of 4.5, 5.1 and 3.46 µg/ml, respectively. Moreover, the NPs exhibited highest selectivity index (>2.0) for A549, Hep-G2 and MDA-MB-231, confirming its specificity towards cancer cell lines. In conclusion, AgNPs prepared from root extract of R. japonica possess strong antioxidant and cytotoxic potential which suggests that they should be investigated further in order to develop safe and effective antioxidant and/or cytotoxic formulations.  相似文献   

11.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

12.
The study is concerned with synthesizing copper oxide nanoparticles with leaf extract Eucalyptus Globoulus. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) revealed that the green synthesized copper oxide nanoparticles are spherical and have a mean particle size of 88 nm, with a negative zeta potential of ?16.9 mV. The XRD graph showed the crystalline and monoclinic phases of CuO nanoparticles. The average crystalline size around 85.80 nm was observed by the Debye–Scherrer formula. The adsorption characteristics of the nano-adsorbents were investigated using methyl orange, and the adsorption efficiency at room temperature attained 95 mg/g. Copper oxide nanoparticles (CuO NPs) adsorb methyl orange dye most effectively at pH 4.5 when the dye is applied in quantities of 0.04 g/50 mL. Box–Behnken design (BBD) in response surface methodology (RSM) was used to optimize various process parameters, such as pH solution (X1: 2 – 11), adsorbing dose (X2: 0.01 – 0.08 g/L), [MO] dye concentration (X3: 10 – 80 mg/L). Overall, the adjusted coefficient of determination (R2) value of 0.99 demonstrated that the used model was quite appropriate, and the chosen RSM was effective in optimization the decolorization conditions of MO.  相似文献   

13.
The present study was carried out to design and synthesize a number of novel aromatic carboxamide derivatives of dehydroabietylamine. The preliminary antifungal assay indicated that most of title compounds displayed moderate to good antifungal activity toward the six fungal strains in vitro. Compounds 3i, 3q, 4b and 4d showed significant antifungal activity against Sclerotinia sclerotiorum, with EC50 values ranging from 0.067 ~ 0.393 mg/L. Compounds 3i, 4b and 4d also showed pronounced mycelial growth inhibition activities against B. cinerea and A. solani. Furthermore, in the in vivo assay, compound 4b exhibited brilliant protective activity against S. sclerotiorum-infected rape leaves. Meanwhile, the in vivo bioassay on tomato plants infected by B. cinerea showed that compound 3i and 4d displayed excellent protective activity at 200 mg/L, which were near to boscalid. Primary mechanistic study revealed that 4b could inhibit sclerotia formation as well as reduce the exopolysaccharide level. SEM and TEM analysis indicated that 4b possessed a strong ability to destroy the surface morphology of mycelia, cell structure and seriously interfere with the growth of the fungal pathogen. In addition, 4b exhibited good inhibitory activity (IC50 = 23.3 ± 1.6 μM) toward succinate dehydrogenase (SDH). Molecular modeling study confirmed the binding modes between compound 4b and SDH. The above antifungal results and fungicidal mechanism study revealed that this class of dehydroabietylamine derivatives could be potential SDH inhibitors and lead compounds for novel fungicides development.  相似文献   

14.
Protein hydrolysates have the potential to be natural and safer sources of bioactive peptides. In this study, two proteases were used to hydrolyze Chinese sturgeon (Acipenser sinensis) protein, and the hydrolysates were then purified to yield antioxidant peptides. The degree of hydrolysis of 23.56 % and 18.14 % was obtained using papain and alcalase 2.4L, respectivly, and hydrolysates had 96.80 % and 87.24 % total amino acid content, respectivly. The papain hydrolysate (PH) and alcalase 2.4L hydrolysate (AH) showed good antioxidant activity against DPPH? (IC50 of 3.64 and 3.15 mg/mL) and ABTS?+ (IC50 of 1.92 and 1.58 mg/mL), respectively. The low-molecular-weight (<1000 Da) fraction of both hydrolysates demonstrated the highest antiradical activity (IC50 of 2.59 and 2.31 mg/mL, DPPH) and (IC50 of 1.54 and 1.36 mg/mL, ABTS), respectively. Nine peptides were separated from both hydrolysates using reverse phase high performance liquid chromatography (RP-HPLC). The IC50 for ABTS?+ scavenging activity of peptide P5 with valine, glycine and asparagine (MW of 282.13 Da) from PH, and peptide P3 with histidine, glycine and alanine (MW of 302.74 Da) from AH was 0.89 and 0.72 mg/mL, respectively. The fractions and purified peptides obtained from Chinese sturgeon hydrolysates could be utilized as natural antioxidant substitutes in pharmaceuticals and food products.  相似文献   

15.
Purpose of studyDodonaea viscosa Jacq. is an ethnomedicinal plant that has been extensively used for the treatment of gout, rheumatism and pain. Current study was undertaken to mine its antioxidant, antimicrobial, cytotoxic and antidiabetic potential. Chromogenic assays were employed to establish plant’s multimode antioxidant profile whereas HPLC fingerprinting was performed to quantify polyphenols. Standard brine shrimp lethality, MTT and SRB assays proved its cytotoxicity potential.ResultsAmong all the extracts (flower, leaf, stem and root), maximum extract recovery (22% w/w), gallic acid equivalent total phenolic content (20.11 ± 0.11 ug GAE/mg DW), ascorbic acid equivalent total antioxidant capacity (22.5 ± 0.07 µg/mg DW) and total reducing power (31.1 ± 1.13 µg/mg DW) were recorded in the distilled water + acetone extract of leaf. The acetone extract of leaf showed maximum quercetin equivalent total flavonoid content (4.78 ± 0.13 µg/mg DW). HPLC-DAD analysis revealed significant amount of rutin, vanillic acid, coumaric acid, ferulic acid, gallic acid, syringic acid, cinnamic acid, gentisic acid, catechin, caffeic acid, apigenin and myricetin in the different plant parts. Maximum scavenging potential was exhibited by methanol + ethyl acetate stem extract (IC50 = 23.8 µg/ml). The highest antibacterial potential was found in flower (85.7%) and root (71.4%) extracts. The ethanol + ethyl acetate (1:1) leaf extract showed noteworthy toxicity against brine shrimps (LC50 = 95.46 µg/ml) while a notable antiproliferative activity against THP-1 (IC50 = 3.4 µg/ml) and Hep G2 (IC50 = 20 µg/ml) cell lines was shown by ethanol + ethyl acetate extracts (1:1) of stem and root, respectively. A moderate inhibition of α-amylase enzyme was observed in all parts of the plant.ConclusionThe results of the present study suggest D. viscosa as a potential source of antioxidant, anticancer and α-amylase inhibitory phytochemicals.  相似文献   

16.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

17.
Cancer is one of the major diseases that seriously threaten human health. Drug delivery nanoplatforms for tumor treatment have attracted increasing attention owing to their unique advantages such as good specificity and few side effects. This study aimed to fabricate a pH-responsive drug release multifunctional nanoplatform NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX. In the platform, Fe3+ doping enhanced the fluorescence intensity of NaGdF4:Yb, Er by 5.8 folds, and the mSiO2 shell substantially increased the specific surface area of nanomaterials (559.257 m2/g). The loading rates of chlorin e6 and doxorubicin hydrochloride (DOX) on NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX reached 28.58 ± 0.85% and 87.53 ± 5.53%, respectively. Additionally, the DOX release rate from the nanoplatform was only 24.4% after 72 h at pH 7.4. However, under tumor microenvironment conditions (pH 5.0), the release rate of DOX increased to 85.3% after 72 h. The nanoplatform could generate reactive oxygen species (ROS) under 980 nm near-infrared excitation. Moreover, the nanoplatform exhibited a strong comprehensive killing efficiency against cancer cells. The viabilities of HeLa, MCF-7, and HepG2 cancer cells were only 18.5, 11.4, and 9.3%, respectively, after being treated with a combination of photodynamic therapy and chemotherapy. The constructed nanoplatform exhibits great application potential in cancer treatment.  相似文献   

18.
Although recent decades have witnessed the synthesis of 1,3,4-thiadiazoles via phosphorus POCl3-promoted cyclization reaction, simultaneous access to 2-amino-1,3,4-thiadiazole and 2-amino-1,3,4-oxadiazole analogs remains unexpected and elusive. Herein, a detailed regiocontrolled synthesis of 2-amino-1,3,4-thiadiazoles in good to high yields with good regioselectivities from readily available thiosemicarbazides using POCl3 was disclosed. Meantime, to establish a comprehensive structure–activity relationship, 2-amino-1,3,4-oxadiazole derivatives as single regioisomers were prepared via EDCI·HCl-triggered cyclization of the thiosemicarbazide intermediates. The in vitro anti-influenza assays proved that the selected compounds with the pyrazine/pyridine ring exhibited certain inhibitory activities against influenza A virus strains A/HK/68 (H3N2) and A/PR/8/34 (H1N1) in MDCK cells. Among them, N-(adamantan-1-yl)-5-(5-(azepan-1-yl)pyrazin-2-yl)-1,3,4-thiadiazol-2-amine (4j) was the most active compound, and exhibited favorable activity with EC50 values of 3.5 μM and 7.5 μM, respectively. In addition, the molecular docking results explained the reason why compound 4j had dual inhibitory activity and revealed the reasonable binding mode of this compound with the M2-S31N and M2-WT ion channels. This compound had the potential to be further developed as an anti-influenza drug.  相似文献   

19.
Graviola, soursop, or guanabana (Annona muricata L.), is an ethnomedical fruit consumed to alleviate headache, diarrhea, diabetes, and cancer. Pericarp is the inedible part of graviola least studied in comparison to seeds and leaves, even thought, it contains the highest concentration of graviola total polyphenols. Anticancer effect of graviola pericarp has been demonstrated in crude extracts attributing the effect to acetogenins, however, crude extracts contain several active molecules. Thus, the present work aimed to fractionate and purify an ethanolic crude extract from graviola pericarp. Purified graviola pericarp fraction (PGPF) was evaluated on cancerous and non-cancerous cell lines, and then was identified by NMR, TOF-MS, and HPLC. Finally, an in silico analysis was performed to predict targets cancer-related of the molecule detected. Our results revealed IC50 values for cervix adenocarcinoma (HeLa), hepatocellular carcinoma (HepG2), triple-negative breast cancer (MDA-MB-231), and non-cancerous cell line (HaCaT) of 92.85 ± 1.23, 81.70 ± 1.09, 84.28 ± 1.08, and 170.2 ± 1.12 µg PGPF/mL, respectively. In vitro therapeutic indexes estimated as quantitative relationship between safety and efficacy of PGPF were 1.83, 2.08, and 2.02 for HeLa, HepG2, and MDA-MB-231, respectively. The NMR analysis revealed astragalin (kaempferol-3-O-glucoside) in PGPF, a flavonoid not reported in graviola pericarp until now. Astragalin identity was confirmed by TOF-MS and HPLC. In silico results support previous reports about astragalin modulating proteins such as Bcl-2, CDK2, CDK4, MAPK and RAF1. Also, results suggest that astragalin may interact with other cancer-related proteins not associated previously with astragalin. In conclusion, astragalin may be contributing to the anticancer effect observed in graviola pericarp extracts.  相似文献   

20.
Lepidium sativum is cultivated mainly for the edible oil from its seeds, and considered as an unutilized and neglected crop despite its important properties. Its oil fraction is used to produce soap and stabilize linseed oil when it is mixed with wild mustard seed oil. Once converted into fatty acid methyl esters, it represents a good substitute for imported petroleum diesel after alkaline transesterification reaction. In the current study, Lepidium sativum seeds cultivated in Tunisia and the physicochemical properties and nutrient profile of its cold pressed seed oil were investigated. The antioxidant, antibacterial, and anti-inflammatory activities of the above oil were also assessed. Lepidium sativum seed oil was abundant in both linolenic (35.59 ± 1.9%) and oleic (21.14 ± 0.63%) acids, and high amounts of β-sitosterol (42.57 ± 2.96 mg/100 g), campesterol (20.04 ± 1.4 mg/100 g) and Δ 5,24 stigmastadienol (11.82 ± 0.45 mg/100 g) were detected. The total tocopherol content of Lepidium sativum seed oil reached 136.83 ± 7.6 mg/100 g with a predominance of γ-tocopherol (86.23%). Its seed oil exhibited an IC50 of 10.33 ± 0.05 mg/mL and a radical scavenging activity of 415.6 ± 40 Trolox Equivalent Antioxidant Capacity (TEAC) for the DPPH and the ABTS assays, respectively. While the thermal analysis proved a high thermal stability of Lepidium sativum seed oil, that of eight bacteria and one fungal strain showed no noticeable bacterial or antifungal effects. It was also revealed that Lepidium sativum seed oil held a remarkable anti-inflammatory activity. Hence, the obtained results evidenced remarkable chemical, antioxidant and anti-inflammatory properties of Lepidium sativum seed oil, which might potentially be promising for enhancing human health and preventing age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号