首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypropylene films of various isotacticities and crystallinities were stretched biaxially in one step in air at 140–152°C or polyaxially in poly(ethylene glycol) at 130–160°C, and the morphological changes were studied by electron microscopy (replica). In the initial stage of stretching, with vA = 1.4, the spherulites of one of the films used for the experiment were broken both from the centers and boundaries, and those of another film were broken mainly from the center. This difference in the deformation behavior seems to be characteristic of the film properties and independent of the method of stretching, although the factors involved are still unknown. On further stretching (vA = 22), well annealed spherulites were broken into many small blocklike fragments with unfolded fibrils running among them, particularly at the low stretching temperature (140°C), and fibrillation proceeded at the expense of the residual fragments. In the case of quenched or slightly crystallized material, the fragments were dendritic and divided into finer and finer fibrils on stretching. At elevated temperature, however, even for well annealed spherulites, the deformation behavior resembles that of the quenched material, and at a high degree of stretching the spherulites take on the fibrillar net structure in every case. In films containing a high amount of atactic fraction, radial, tangential, and boundary cracking occurred more easily, and broad fibrils were observed across the cracks.  相似文献   

2.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively.  相似文献   

3.
Unoriented T-die flat films of nylon 6 and PET films annealed at 90°C were stretched in water at 80°C. Amorphous PET films were stretched in water at 65–75°C. Changes in the light scattering patterns from these samples upon stretching were investigated. One of the observed LS patterns from the stretched samples is the Hv eight-leaf pattern consisting of four lobes and streaks. In the nylon 6 and heat-treated PET showing this pattern, spherulitic patterns can be seen in polarization microscopy. The microscopic spherulitic superstructure may possibly be the factor responsible for producing the lobe-and-streak pattern. On the other hand, many microscopic eight-leaf patterns can be observed in amorphous unannealed PET showing the lobe-and-streak pattern. These microscopic patterns are due to retardation at stress concentrations around impurities and nuclei. The superstructure giving these microscopic patterns must be the origin of the lobe-and-streak pattern from unannealed PET. Another scattering pattern, the Vv cruciform pattern, was observed in both stretched nylon 6 and unannealed PET. This pattern is due to an orientation change across the slip lines observed under a polarizing microscope. It is noted (1) that the appearance of the slip lines in PET coincides with the occurrence of oriented crystallization on stretching, (2) that the lobe-and-streak pattern from PET in which orientation crystallization has taken place is fairly stable to heat treatment and does not disappear until just before melting, and (3) that the superstructures produced at low stretching seem to be deformed on further stretching, in accordance with affine deformation theory.  相似文献   

4.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

5.
The melting and crystallisation behaviour of poly(m-xylene adipamide) (MXD6) are investigated by using the conventional DSC, X-ray diffraction and polarised light microscopy. Triple, double or single melting endotherms are obtained in subsequent heating scan for the samples after isothermal crystallisation from the melt state at different temperatures. The lowest melting peak can be ascribed to the melting of secondary crystals. The melting of primary crystals causes the medium melting peak and the highest melting peak is attributed to the melting of recrystallised species formed during heating. Following the Hoffman–Weeks theory, the equilibrium melting temperature is equal to 250°C and the equilibrium melting enthalpy ΔH m 0 to 175 J g–1. Then, using the Lauritzen–Hoffmann theory of secondary crystallisation, the analyse of the spherulitic growth shows that the temperature of transition between the growing regimes II and III is equal to 176°C. Finally the Gibbs-Thomson relationship allows the determination of the distribution function of crystalline lamellae.  相似文献   

6.
Melting behavior of an experimental Halar film, a predominantly alternating 1:1 copolymer of ethylene (E) and chlorotrifluoroethylene (CTFE), has been studied. Differential scanning calorimetry (DSC) reveals single or double melting peaks, depending upon the thermal history. The lower-temperature melting peak Tm1 is produced only by the thermal treatment and shows a strong dependence on annealing time and temperature. On the basis of the DSC and x-ray data it can be suggested that Tm1 represents the melting of relatively small crystallites formed upon annealing. The higher-temperature melting peak Tm2 is always shown at 238°C. (Note: the specification for commercial Halar product is 240°C. The slightly lower melting temperature reported in this study is probably due to the fact that we are dealing with an experimental melt-processed material.) On the basis of the heating rate study we propose that Halar crystallizes with stable crystals (Tm2 = 238°C) regardless of the crystallization conditions, i.e., quenching, slow cooling, or even annealing. Crystals of Halar have a heat of fusion of approximately 35 cal/g or 146 kJ/kg. Detailed analysis of the melting behavior of Halar is presented.  相似文献   

7.
In order to elucidate microscopic deformation behavior at different locations in isotropic semicrystalline polymers, the structural evolution of a preoriented high‐density polyethylene sample during tensile deformation at different temperatures and along different directions with respect to the preorientation was investigated by means of combined in situ synchrotron small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For samples stretched along preorientation, two situations were found: (1) at 30 °C, the sample broke after a moderate deformation, which is accomplished by the slippage of the microfibrils; (2) at 80 and 100 °C, fragmentation of original lamellae followed by recrystallization process was observed resulting in new lamellar crystals of different thickness depending on stretching temperature. For samples stretched perpendicular or 45° with respect to the preorientation, the samples always end up with a new oriented lamellar structure with the normal along the stretching direction via a stress‐induced fragmentation and recrystallization route. The thickness of the final achieved lamellae depends only on stretching temperature in this case. Compared to samples stretched along the preorientation direction, samples stretched perpendicular and 45° with respect to the preorientation direction showed at least several times of maxima achievable stress before macroscopic failure possibly due to the favorable occurrence and development of microdefects in those lamellar stacks with their normal parallel to the stretching direction. This result might have significant consequence in designing optimal procedure to produce high performance polyethylene products from solid state. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 716–726  相似文献   

8.
Summary: The polymorphisms in poly(hexamethylene terephthalate) (PHT), along with their associated melting and spherulite morphologies, were examined by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized‐light microscopy (PLM). The morphology and crystal cells were dependent on the temperature of crystallization. When melt‐crystallized at low temperatures (90–135 °C), PHT showed at least five melting peaks and two re‐crystallization peaks upon DSC scanning, and the samples displayed various fractions of both α and β crystals. However, only a single melting peak was obtained in PHT melt‐crystallized at 140 °C or above, which displayed a single type of β crystal. In addition, two different forms of spherulites were identified in melt‐crystallized PHT, with one being a typical Maltese‐cross spherulite containing the α crystal, and the other being a dendrite‐type packed mainly with the β crystal. This study provides timely evidence for a critical interpretation of the relationship between multiple melting and polymorphisms (unit cells and spherulites) in polymers, including semi‐crystalline polyesters.

WAXD diffractograms for PHT melt‐crystallized at 140 °C, revealing a single type of β‐crystal cell.  相似文献   


9.
Summary: In a low‐molecular‐weight polyethylene‐block‐poly(ethylene oxide) (PE‐b‐PEO) diblock copolymer, two pathway‐dependent melting processes were observed: Upon slow heating, the PE lamellar crystals melted at ≈97 °C into a disordered state. However, when the temperature rapidly jumped to above the melting point (e.g., 100 °C), the PE lamellar crystals transformed directly into an ordered lamellar melt, followed by an isothermal conversion into a disordered melt. This isothermal order‐to‐disorder transition was explained by superheating of the PE crystals using a GT diagram.

A schematic GT diagram explaining the pathway‐dependent double melting for a crystalline polyethylene‐block‐poly(ethylene oxide) copolymer.  相似文献   


10.
The melting process of constrained nylon 6 fibers has been studied to estimate the true melting point of its original crystals. The melting peak became simpler in shape and shifted to higher temperature with increasing fiber-axis restricting force. When heating rate, β, was increased, the temperature where the melting curve initially departs from its baseline, Tsm, decreased steeply in the range of 45 to 60°C min-1, and increased linearly with increasing β above 60°C min-1. By linear extrapolation of Tsm to 0°C min-1, the temperature of ca 190°C was obtained for the melting temperature of the original nylon 6 crystals. This seems to correspond to the zero-entropy-production melting of the most imperfect crystallites of the nylon 6 fabric. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Reversible and irreversible spectral changes are observed on heating of solvent-cast films of poly(ethylene terephthalate) (PET) between 30 and 230°C. The irreversible changes are due to the gauche-trans isomerization of the ethylene glycol segments and the corresponding changes in the symmetry and resonance characteristics of the aromatic rings. On the other hand, there are thermally reversible spectral changes. These reversible effects are primarily observed for the modes of the aromatic ring and the trans ethylene glycol segment. These reversible spectral changes include intensity variations and frequency shifts and are found to be linearly dependent on the measurement temperature. These reversible changes arise from changes in intermolecular and intramolecular forces as the temperature changes.  相似文献   

12.
The effect of the uniaxial and biaxial stretching and subsequent solution annealing of extrusion‐cast polyamide‐11 films on the crystalline structure and morphology was investigated with differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), Fourier transform infrared spectroscopy, and small‐angle X‐ray scattering (SAXS). The extrusion‐cast polyamide‐11 films exhibited elevations in the glass‐transition and cold‐crystallization temperatures with a constant crystallinity and a constant melting point during aging under room conditions (20–26 °C and 20–31% relative humidity). WAXD and SAXS suggested that chain‐folded lamellae of coexisting α‐ and β‐crystals existed in all the stretched polyamide‐11 films. WAXD pole figures indicated that hydrogen bonds in the hydrogen‐bonded sheets of these two crystalline forms apparently formed between antiparallel chain molecules. The unit cell parameters [a = 9.52 Å, b = 5.35 Å, c = 14.90 Å (chain axis), α = 48.5°, β = 90°, and γ = 74.7° for a triclinic α form and a = 9.52 Å, b = 14.90 Å (chain axis), c = 4.00 Å, α = 90°, β = 67.5°, and γ = 90° for a monoclinic β form] for polyamide‐11 crystals were proposed according to the results of this study and the results of previous investigators. The unit cell parameters of the stretched extrusion‐cast polyamide‐11 films varied, depending on the stretching conditions (the stretch temperature and stretch ratio). As the stretch temperature and stretch ratio were increased, the crystal became more similar to the form described previously and was accompanied by an increase in the long spacing of crystalline lamellae. Annealing the stretched films in a boiling 20% formic acid solution made slightly more perfected crystals. The hydrogen‐bonding α(010) + β(002) planes, which are nearly parallel to both amide group planes and zigzag methylene sequence planes of the biaxially stretched films were found to be parallel to the film surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2624–2640, 2002  相似文献   

13.
Thermoluminescence (TL) has been observed in γ-irradiated extended-chain crystals of polyethylene above room temperature. The TL curve, which exhibits four peaks at 50, 90, 120, and 140°C, is different from that given by folded-chain crystals, in both shape and intensity. In particular, a shape, strong glow peak is observed at 140°C, corresponding to the melting temperature of the extended chain crystals. These results are discussed in relation to independent measurements by differential scanning calorimetry and electron spin resonance.  相似文献   

14.
Low syndiotactic polypropylene (sPP; rrrr = 80%) films were isothermally crystallized at 0 °C (sample S0) and 90 °C (sample S90) for 65 h, respectively. Fourier transform infrared spectroscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction were used to characterize the structure transformation and orientation behavior of samples S0 and S90 at both stretched and stress‐relaxed states. It was found that stretching (λ = 0–700%) induces the transformation of the chain conformation from helical to trans‐planar form for both S0 and S90 films. The stretched S0 and S90 samples show well oriented trans‐planar chains as well as partially retained helices. Simultaneously, crystalline phase transformation occurs during the stretching and relaxing processes of the investigated sPP samples, i.e., stable form I crystals can be transformed into metastable form III or mesophase by stretching samples, and vice versa. For stretched S0 sample, form III with trans‐planar conformation, which generally exists in highly stretched sPP, cannot be observed, even at higher strains. For sample S90, however, stretching might induce the formation of both the form III crystals and mesophase with trans‐planar chains; releasing the tension, form III again gets converted into trans‐planar mesophase and form I crystals. In the stretched and stress‐relaxed states of samples S0 and S90, the difference of the delicate orientation behavior and relative content of chain conformation and crystalline form can be attributed to the different heat‐treating methods of the low syndiotacticity sPP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2924–2936, 2005  相似文献   

15.
The polymorphous crystallization and multiple melting behavior of poly(l-lactic acid) (PLLA) with an optical purity of 92 % were investigated after isothermally crystallized from the melt state by wide-angle X-ray diffraction and differential scanning calorimetry. Owing to the low optical purity, it was found that the disordered (α′) and ordered (α) crystalline phases of PLLA were formed in the samples crystallized at lower (<95 °C) and higher (≥95 °C) temperatures, respectively. The melting behavior of PLLA is different in three regions of crystallization temperature (T c) divided into Region I (T c < 95 °C), Region II (95 °C ≤ T c < 120 °C), and Region III (T c ≥ 120 °C). In Region I, an exothermic peak was observed between the low-temperature and high-temperature endothermic peaks, which results from the solid–solid phase transition of α′-form crystal to α one. In Region II, the double-melting peaks can be mainly ascribed to the melting–recrystallization–remelting of less stable α crystals. In Region III, the single endotherm shows that the α crystals formed at higher temperatures are stable enough and melt directly without the recrystallization process during heating.  相似文献   

16.
Melt-crystallized films of poly(L -lactic acid) (PLLA) with Mv in the range of 3.8 ∼ 46 × 104 consisting of α-form crystals were uniaxially drawn by solid-state coextrusion. The effects of Mv, extrusion draw ratio (EDR), and extrusion temperature (Text) on the crystal/crystal transformation from α- to β-form crystals and the resultant tensile properties of drawn products were studied. The crystal transformation proceeded with EDR and more rapidly for the higher Mv's. Furthermore, the crystal transformation proceeded most rapidly with EDR at a Text around 130 °C, independently of the Mv's. As a result of the optimum combination of processing variables influencing the the crystal transformation (Mv, Text, and drawability), highly oriented films consisting of β-form crystals alone were obtained by coextrusion of higher Mv samples at Text's slightly below the melting temperature (150 ∼ 170 °C) and at higher EDR's > 11. Both the tensile modulus and strength increased rapidly with EDR. The modulus at a given EDR was slightly higher for the samples with higher Mv's. In contrast, the strength at a given EDR was remarkably higher for the higher M v's. The highest tensile modulus of 8.0 GPa and strength of 500 MPa were obtained with the sample of the highest Mv of 46 × 104 coextruded at 170 °C to the highest EDR of 14.  相似文献   

17.
The structural changes of two linear polyethylenes, LPEs, with different molar mass and of two homogeneous copolymers of ethylene and 1‐octene with comparable comonomer content but different molar mass were monitored during heating at 10 °C per minute using synchrotron radiation SAXS. Two sets of samples, cooled at 0.1 °C per minute and quenched in liquid nitrogen, respectively, were studied. All LPEs display surface melting between room temperature and the end melting temperature, whereas complete melting, according to lamellar thickness, only occurs at the highest temperatures where DSC displays a pronounced melting peak. There is recrystallization followed by isothermal lamellar thickening if annealing steps are inserted. The lamellar crystals of slowly cooled homogeneous copolymers melt in the reverse order of their formation, that is, crystals melt according to their thickness. Quenching creates unstable crystals through the cocrystallization of ethylene sequences with different length. These crystals repeatedly melt and co‐recrystallize during heating. The exothermic heat due to recrystallization partially compensates the endothermic heat due to melting resulting in a narrow overall DSC melting peak with its maximum at a higher temperature than the melting peak of slowly cooled copolymers. With increasing temperature, the crystallinity of quenched copolymers overtakes the one of slowly cooled samples due to co‐recrystallization by which an overcrowding of leaving chains at the crystal surfaces is avoided. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1975–1991, 2000  相似文献   

18.
The thermal shrinkage of stretched crosslinked high-density polyethylene (HDPE) was investigated with the aim to produce heat shrinkable materials. The heat shrinkable property was achieved by a process of heating-stretching-cooling by aid of tensile machine on crosslinked HDPE obtained by compounding with various amount of peroxide. Effect of stretching ratio and stretching temperature on thermal and shrinkage behaviour at varying peroxide contents was investigated. The results showed that crosslinking hindered the crystallization process by decreasing the melting and crystallization temperatures as well as the total degree of crystallinity. The stretching ratio had no significant effect on shrink temperature but rather on ultimate shrinkage. The stretching temperature had relatively significant influence on the shrink temperature. Crosslinked HDPE stretched at above melting point (140 °C) had higher shrink temperature as compared to those stretched at lower temperature (90 °C). These effects could be reasonably explained by Hoffman theory and changes in crystallites size and total amount of crystallinity.  相似文献   

19.
The effect of stretching on the thermal behavior of acrylic fibers was investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and Fourier transform infrared spectroscopy (FTIR). In air atmosphere, the peak temperature of the dynamic DSC thermogram was significantly lowered from 289 to 273 °C when the gel fibers (undrawn) were drawn to a draw ratio of 11.2. However, the initiation temperature was unchanged at 202 °C. The shoulder in the region of 310–380 °C was gradually converted to a sharp peak during the drawing process. However, the dynamic DSC in nitrogen atmosphere did not change in all cases. In air atmosphere the total heat liberated, ΔH, for gel fiber was 851 J g?1. However, upon drawing to 11.2, ΔH increased to 1580 J g?1 showing an increase in the total chemical changes. An intimate relationship of chemical changes during the heating process was observed with FTIR of heated samples at various temperatures. The initiation of a DSC exotherm in air begins with nitrile cyclization, and subsequently dehydrogenation was initiated between 220 and 260 °C. An increase in the X‐ray orientation factor and sonic modulus gave a correlation between the stretching draw ratio and crystalline/overall molecular orientation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2949–2958, 2003  相似文献   

20.

The oriented and thermal crystallization of amorphous poly(ethylene terephthalate) (PET) films was investigated in terms of the morphological aspects. When the amorphous PET films were stretched up to the desired draw ratios in a hot water bath at 62, 72, and 80 °C, the birefringence of the specimens increased with increasing draw ratio (λ). This tendency becomes most significant when the specimen was drawn in the bath at 62 °C. The storage modulus of the specimen drawn at 62 °C was higher than those of the specimens drawn at 72 and 80 °C. The exothermic peak in the DSC curves was observed clearly for the specimen drawn up to λ=4 in the hot water bath at 80 °C, while the peak did not appear for the specimen drawn up to λ=4 at 62 °C. Under an Hv polarization condition, light scattering patterns from the specimens drawn in the hot water bath showed four lobes at small azimuthal angles and four sharp streaks at large azimuthal angles. Such a profile was independent of the drawing temperatures from 62 to 80 °C. Based on the observed Hv patterns, a model was proposed by assuming the existence of a row-nucleated sheaf-like structure whose rows were preferentially oriented at a particular angle with respect to the stretching direction. The patterns calculated by using the above model were rather close to the patterns observed. This agreement implies that row-nucleated sheaf-like texture arises with lamellar overgrowth.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号