首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
PP-carbon CPC show interesting thermo-electrical properties, smooth resistivity increase with temperature up to 150°C and consequently high power dissipation on a wide temperature range. The addition of short carbon fibers to PP already formulated with carbon black increases sharply the electrical conductivity of the CPC but does not have much influence on thermal conductivity as it could have been expected from the favorable aspect ratio of the fibers. The simulations of the thermo-electrical behavior of the CPC under tension put into evidence a temperature gradient at high heat flux due to the low thermal conductivity, which may damage the material itself.  相似文献   

2.
New thermosetting resins were prepared from the reaction of 1,4-bis(2,2-dicyanovinyl)benzene with aromatic diamines in varying molar ratios. The thermal stability of these resins was correlated with their composition and the curing conditions. They were stable in N2 up to 370–448°C and afforded anaerobic char yields of 73–84% at 800°C after curing at 300°C for 20–60 h. The temperature dependence of the electrical resistivity of all resins pyrolyzed at 700°C for 15 h was studied in the temperature range from ?173–327°C (100–600 K). The results showed that at room temperature the unpyrolyzed polymers have insulating properties, whereas a dramatic decrease in the electrical resistivity is observed following pyrolysis. The temperature dependence of the electrical resistivity suggests that all of the materials studied have semiconducting properties. The observed electrical conductivity is thermally activated with activation energies ranging from 0.03–0.06 eV. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Cadmium chalcogenides with appropriate band gap energy have been attracting a great deal of attention because of their potential applications in optoelectronic devices. CdS in the form of thin film is prepared at different substrate temperatures by a simple and inexpensive chemical spray pyrolysis technique. The as-deposited thin films have been characterized by XRD, SEM, EDAX and electrical resistivity measurement techniques. The XRD patterns show that the films are polycrystalline with hexagonal crystal structure irrespective of substrate temperature. SEM studies reveal that the grains are uniform with uneven spherically shaped, distributed over the entire surface of the substrates. Compositional analysis reveals that the material formed is stoichiometric at the optimized substrate temperature. The optical band gap energy is found to be 2.44 eV with direct allowed band-to-band transition for film deposited at 300°C. The electrical resistivity measurement shows that the films are semiconducting with a minimum resistivity for film deposited at 300°C. The thermoelectric power measurement shows that films exhibit n-type of conductivity.  相似文献   

4.
Dimethylamine borane (DMAB) was used in electroless copper plating on liquid crystal polymer (LCP) films. An orthogonal test was applied to optimize the plating condition. With Cu film resistivity as the evaluation index, the optimum plating condition is: 10 g/L of CuSO4 ? 5H2O, 14 g/L of EDTA‐2Na, 6 g/L of DMAB, 9.5 of pH value and 50 °C. As pH value increases, the Cu film resistivity decreases and the depo‐ sition rate increases. As temperature increases, the Cu film resistivity decreases first and then increases with a minimum at 50 °C while the deposition rate increases first and then decreases with a maximum at 50 °C. The decreased Cu film resistivity can be attributed to the occurrence of CuO. The adhesive strength of copper layer to LCP film is constant at pH values lower than 8.5 and decreases slightly with the increase in pH value. As temperature increases, the adhesive strength decreases slightly. The decreased adhesive strength with both pH and temperature may be a result of an increased corrosion attack from the bath to the surface of LCP films. Low Cu film resistivity and high deposition rate as well as high adhesive strength can be obtained using DMAB reducing agent.  相似文献   

5.
The DC conductivity of polymer blends composed of poly(ethylene‐co‐vinyl acetate) (EVA) and high density polyethylene (HDPE), where a conductive carbon black (CB) had been preferentially blended into the HDPE, were investigated to establish the percolation characteristics. The blends exhibited reduced percolation thresholds and enhanced conductivities above that of the individually carbon filled HDPE and EVA. The percolation threshold of the EVA/HDPE/CB composites was between 3.6 and 4.2 wt % carbon black, where the volume resistivity changed by 8 orders of magnitude. This threshold is at a significantly lower carbon content than the individually filled HDPE or EVA. At a carbon black loading of 4.8 wt %, the EVA/HDPE/CB composite exhibits a volume resistivity which is approximately 14 and 11 orders of magnitude lower than the HDPE/CB and EVA/CB systems, respectively, at the same level of incorporated carbon black. The dielectric response of the ternary composites, at a temperature of 23°C and frequency of 1 kHz, exhibited an abrupt increase of ca. 252% at a carbon concentration of 4.8 wt %, suggesting that the percolation threshold is somewhat higher than the range predicted from DC conductivity measurements. Percolating composites with increasing levels of carbon black exhibit significantly greater relative permittivity and dielectric loss factors, with the composite containing 6 wt % of carbon black having a value of ϵ′ ≈ 79 and ϵ″ ≈ 14. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1899–1910, 1999  相似文献   

6.
Semiconductive shielding layer as an important part of high-voltage cable, its performance directly affects the safe operation and the service life of the cable. Carbon black (CB) is the main conductive filler of shielding materials, and its type and concentration directly affect the performance of the shielding layer. In this paper, CB-A with higher structure and CB-B with lower structure were used as conductive fillers and EBA was chosen as the matrix resin to prepare the shielding materials. The CB concentrations of the shielding materials were 35, 45, and 55 phr. The influences of CB type and concentration on the physicochemical, electrical, thermal and mechanical properties of the shielding materials were investigated. The research shows that when the CB types are the same, the higher the concentration of CB, the more intensive the CB network in the shielding material, and the more serious the CB agglomeration phenomenon. With increasing CB concentration, shielding materials show a decreasing trend of volume resistivity, an increasing trend of thermal conductivity, and a decreasing trend of mechanical properties. When the CB concentration is the equal, the CB-A has better dispersion in the matrix resin, CB-A/EBA shielding material has lower volume resistivity and weaker PTC effect, CB-A/EBA shielding material has higher thermal conductivity at low temperature and CB-B/EBA shielding material has higher thermal conductivity at high temperature, CB-A/EBA shielding material has better mechanical properties. A comprehensive comparison shows that CB-A/EBA shielding material with a concentration of 45 phr has excellent overall performance, with volume resistivity of 15.3 and 68 Ω·cm at 25°C and 90°C, respectively. The thermal conductivity is 0.434 W/(m K) at room temperature and 0.536 W/(m K) at 90°C. The stress is 31.08 MPa and the strain is 570.2%. This work has important reference for the selection of conductive fillers and performance improvement of semiconductive shielding materials.  相似文献   

7.
Composite materials based on polyacrylonitrile with carbon nanofillers (technical-grade carbon, thermally expanded graphite, carbon nanotubes) were synthesized. A carbonization of film and fiber composite samples in the temperature range 20–1000°C provided a noticeable increase in the thermal stability of fibers and a rise in the electrical conductivity of the composite material. Dependences of the degree of carbonization on the concentration of nanostructures, type of material, and nature of modifier were determined. Differential-thermal and X-ray diffraction analyses revealed the formation of oriented nucleus structures of turbostratic carbon in the temperature range 450–550°C.  相似文献   

8.
Atmospheric pressure chemical vapor deposition (APCVD) employing the precursor system of tin tetrachloride, ethyl formate, and 2,2,2‐trifluoroethyl trifluoroacetate vapors that were transported to hot glass substrates to deposit fluorine doped tin dioxide thin films. The system is optimized with respect to the substrate deposition temperature and to the amount of fluoride added to the precursor stream and the resultant structural, electrical and optical properties compared. Increasing the substrate temperature from 360 °C to 610 °C resulted in an approximately linear increase in thickness of the tin dioxide films. However, the resistivity decreased from 1.8 × 10–2 Ω · cm at 360 °C to a minimum of 5.9 × 10–4 Ω · cm at 560 °C and increased to 9.4 × 10–4 Ω · cm at 610 °C. While maintaining a substrate temperature of 560 °C different amounts of fluorine precursor was introduced into the carrier stream, from 0 mL · h–1 to 5 mL · h–1, resulting in a decrease in resistivity (ρ) from 5.3 × 10–2 Ω · cm at 0 mL · h–1 to a minimum of 5.9 × 10–4 Ω · cm at 2 mL · h–1 and then increased to 1.0 × 10–3 Ω · cm at 5 mL · h–1. As the amount of fluoride is increased a concommittent increase in carrier concentration results until the point of overdoping the film produces an increase in scattering sites that increases resistivity. Best films were deposited at 560 °C and when the fluoride precursor flow rate was 2 mL · h–1.  相似文献   

9.
The ionic liquid 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide (BDMIM-TFSI) showed a conductivity of 1.65?mS cm?1 and an electrochemical stability window of 4.4?V at room temperature. Two types of electrodes based on carbon nanomaterials were prepared: (1) with alternating layers of two oppositely charged functionalized double-walled carbon nanotubes (DWCNTs) and (2) with the functionalized DWCNTs and graphene oxide nanoplatelets. The electrodes presented a porous morphology and a connected pathway between the carbon nanotubes and graphene oxide platelets. Electrochemical capacitors based on the carbon nanomaterials and BDMIM-TFSI were produced in a stacking configuration and were characterized at 25?°C, 60?°C, and 100?°C. The supercapacitors with electrodes based on the three alternating layers of two oppositely charged DWCNTs and graphene oxide presented higher values of capacitance, which were attributed to a morphology favorable to providing ionic access to the carbonaceous surface. Box-like voltammetric curves were used to calculate the capacitance in a 4-V potential window at 100?°C.  相似文献   

10.
Styrene–butadiene rubber (SBR-1502) loaded with 50 phr carbon black (HAF) was prepared. The electrical conductivity of rubber vulcanizates was measured. It was found that milling conditions have a marked effect on the temperature dependence of the electrical conductivity σ(T) of test samples. In this case, the resistivity of prepared samples increases with remilling and has a minimum value on the σ(T) curve. Thermal-oxidative aging of such vulcanizates decreases the conductivity of the prepared samples.  相似文献   

11.
Dadache  D.  Rouabah  F.  Fois  M.  Guellal  M. 《Russian Journal of Applied Chemistry》2018,91(12):1974-1983

In this study, the effects of the free quenching temperature on mechanical, thermomechanical and thermophysical properties of pigmented polystyrene (PS/TiO2) with 3% of TiO2 were investigated. Thermal conductivity and thermal diffusivity of the titanium dioxide pigmented polystyrene were measured using a periodic method. The results show a slow improvement of the notched Izod impact strength obtained after a second quenching at 15 and 35°C; whereas thermal conductivity and diffusivity reached a minimum value at the quenching temperature of 35°C. However, the effect on the thermophysical properties is only noted for the second quenching temperature 35°C. The study allowed examining the effect of quenching temperature, filler concentration and material thickness on the transient thermal behavior of the titanium dioxide pigmented polystyrene.

  相似文献   

12.
Cyanoacetylene can be polymerized from the vapor state onto an inactive surface of substrate at a temperature as low as 200°C. The polymerization first occurs by way of the carbon–carbon triple bond. The reaction product obtained at 1000°C contains nitrogen at a concentration as high as 13.7%. At least some of this nitrogen is in naphtiridine ring or rings similar to it. The product obtained at 400°C is amorphous, while the product obtained at 1000°C has at least partly graphite-like crystalline structures with an apparent crystallite size (Lc) of about 17 Å. The electric conductivities of the products obtained at 400, 700, and 1000°C are 7.7 × 10?2, 91, and 1600 S/cm, respectively. These values are extremely high compared to the pyrolized PAN treated at the same temperature. Electric conductivity of the product obtained at 400°C is well explained by the variable range hopping model in 3-dimensional amorphous materials. With the products obtained at the higher temperatures, conductivity cannot be accounted for by the hopping model. This is probably due to the development of graphite-like structure.  相似文献   

13.
A highly stable proton conductor has been developed from carbon sphere oxide (CSO). Carbon sphere (CS) generated from sucrose was oxidized successfully to CSO using Hummers’ graphite oxidation technique. At room temperature and 90 % relative humidity, the proton conductivity of thin layer CSO on microsized comb electrode was found to be 8.7×10?3 S cm?1, which is higher than that for a similar graphene oxide (GO) sample (3.4×10?3 S cm?1). The activation energy (Ea) of 0.258 eV suggests that the proton is conducted through the Grotthuss mechanism. The carboxyl functional groups on the CSO surface are primarily responsible for transporting protons. In contrast to conventional carbon‐based proton conductors, in which the functional groups decompose around 80 °C, CSO has a stable morphology and functional groups with reproducible proton conductivity up to 400 °C. Even once annealed at different temperatures at high relative humidity, the proton conductivity of CSO remains almost unchanged, whereas significant change is seen with a similar GO sample. After annealing at 100 and 200 °C, the respective proton conductivity of CSO was almost the same, and was about ~50 % of the proton conductivity at room temperature. Carbon‐based solid electrolyte with such high thermal stability and reproducible proton conductivity is desired for practical applications. We expect that a CSO‐based proton conductor would be applicable for fuel cells and sensing devices operating under high temperatures.  相似文献   

14.
The effect of slow cycle heating and cooling on the stability of electrical properties of two polymer composites‐ polypropylene/polypyrrole (PP/PPy) and polypropylene/carbon black (PP/CB) ‐ was investigated. Conductivity in composites was measured in heating/cooling cycles in the temperature range from 16°C to 105°C in PP/PPy and to 125°C in PP/CB, respectively. It was found that the thermal treatment caused the decrease of PP/PPy conductivity while in case of PP/CB the treatment increased the electrical conductivity. The positive effect was explained by increased crystallinity in the thermally treated composite.  相似文献   

15.
Conductive Polymer Composites (CPC) have been obtained by blending two immiscible polymers, poly(butylene terephthalate) (PBT) and poly(amide12-b-tetramethyleneglycol) (PEBAX) with carbon black (CB). The extrusion process allows to obtain anisotrope co-continuous structures of various morphologies depending on composition and experimental conditions. It is possible to enhance CPC conductivity with appropriate processing temperature (Tp) and screw speed (Ω), without changing the composition of the blend. The best results are obtained with Ω =5 rpm and Tp=260°C. PBT/PEBAX-CB resistivity evolution with Tp and Ω doesn't follow a linear law as expected from previous studies with poly(butylene terephthalate)/poly(ethylene)-CB and poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-CB systems. CB distribution has a more important impact on conductivity than polymers phase morphology. A good control of these parameters is essential to reproduce and optimize electrical properties.  相似文献   

16.
The conductivity of dry poly(hexamethylene adipamide) (nylon 66) was measured as a function of time and temperature. Three temperature ranges were observed in which the time dependence of conductivity differed: (a) below 80°C. the conductivity decreased continuously with time; (b) between 80°C. and 110°C. the conductivity remained constant over long periods; (c) above 120°C. a continuous decrease in conductivity was again observed. In other experiments the volume of gas evolved from the nylon film was measured under continuous potential and compared with the total current passed through the sample. It was observed that above 120°C. the gas evolved corresponded to about one-half the volume calculated if the conduction process involved only protons. Below 120°C. the gas evolved corresponded to an increasingly small fraction of the total current until below 90°C. no evolution of gas was observed. This suggests that at temperatures above 120°C. conduction involves the transport of both protons and electrons, whereas at lower temperatures it is electronic. Mechanisms of conduction are discussed.  相似文献   

17.
This study is focused on characterization of the low temperature properties of the YSZ/STO/YSZ superlattice film deposited onto unilateral polished SrTiO3 (STO) monocrystalline substrates using pulsed laser deposition (PLD). The phase composition, structure, surface morphology and electrical properties of the oxygen ion conducting electrolyte YSZ/STO/YSZ multilayers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The minimum conductivity activation energy of YSZ/STO/YSZ is 0.76 eV at 300–500°C. The YSZ/STO/YSZ superlattice film shows an enhancement in conductivity by three orders of magnitude compared to bulk YSZ at a temperature of 300°C.  相似文献   

18.
 Ultra-high-molecular-weight polyethylene (UHMWPE) – carbon black (CB) blends were prepared by gelation/ crystallization from PE dilute solutions containing CB particles. The UHMWPE/CB composition chosen were 1/0.15, 1/0.25, 1/0.5, 1/0.75, 1/1, 1/3, 1/5, and 1/9, etc. The cross-linking of PE chains was performed by chemical reaction of dicumyl-peroxide at 160 °C. X-ray diffraction patterns indicate that the crystallinity of PE within the blends decreased drastically through the chemical reaction at high temperature. The sample preparation method by gelation/crystallization provided the UHMWPE–CB system with various CB contents up to 90% and the conductivities for the resultant specimens were in the range from 10-9 to 1 Ω-1 cm-1 corresponding to the electric conductivity range of semiconductors. The blends assured thermal stability of electric conductivity by cross-linking of PE chains, although the mechanical property such as the storage and loss moduli were very sensitive to temperature. The conductivity of the blends with CB content ≥20% were almost independent of temperature up to 220 °C and the values in the heating and cooling processes were almost the same. On the other hand, for the UHMWPE–CB blends with 13% CB content corresponding to the critical one, temperature dependence of electric resistivity showed positive temperature coefficient (PTC) effect. The PTC intensities for non-cross-linked and cross-linked materials were lower than that of the corresponding low-molecular-weight-polyethylene (LMWPE)–CB blend but the maximum peak appeared at 160 °C which is higher than the peak temperature of LMWPE–CB blend. Received: 10 December 1997 Accepted: 9 April 1998  相似文献   

19.
Conductive polymer composites (CPC) containing nickel‐coated carbon fiber (NiCF) as filler were prepared using ultra‐high molecular weight polyethylene (UHMWPE) or its mixture with ethylene‐methyl methacrylate (EMMA) as matrix by gelation/crystallization from dilute solution. The electrical conductivity, its temperature dependence, and self‐heating properties of the CPC films were investigated as a function of NiCF content and composition of matrix in details. This article reported the first successful result for getting a good positive temperature coefficient (PTC) effect with 9–10 orders of magnitude of PTC intensity for UHMWPE filled with NiCF fillers where the pure UHMWPE was used as matrix. At the same time, it was found that the drastic increase of resistivity occurred in temperature range of 120–200 °C, especially in the range of 180–200 °C, for the specimens with matrix ratio of UHMWPE and EMMA (UHMWPE/EMMA) of 1/0 and 1/1 (NiCF = 10 vol %). The SEM observation revealed to the difference between the surfaces of NiCF heated at 180 and 200 °C. Researches on the self‐heating properties of the composites indicated a very high heat transfer for this kind of CPCs. For the 1/1 composite film with 10 vol % NiCF, surface temperature (Ts) reached 125 °C within 40 s under direct electric field where the supplied voltage was only 2 V corresponding to the supplied power as 0.9 W. When the supplied voltage was enough high to make Ts beyond the melting point of UHMWPE component, the Ts and its stability of CPC films were greatly influenced by the PTC effect. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1253–1266, 2009  相似文献   

20.
Composite materials based on ultrahigh-molecular-weight polyethylene (UHMWPE)–low- molecular-weight polyethylene (LMWPE) and carbon black (CB) particles were prepared by a gelation/crystallization process from dilute solution. The method was developed to obtain composite materials with an improved and reproducible positive temperature coefficient (PTC) effect. Drastic improvement of the PTC effect was achieved when specimens with a LMWPE/UHMWPE composition of 9/1 containing 13 wt% CB were treated at 170 °C without restraint before measurement. The maximum PTC intensity, defined as the ratio of the maximum resistivity to the resistivity at room temperature, was about 5 orders of magnitude, which equals that of the LMWPE-CB system prepared by a kneading method. Interestingly, electrical resistivity during the heating-cooling process showed good reproducibility in the temperature range 30–190 °C, but has never been reported before even for cross-linked LMWPE-CB compostie. Scanning electron micrographs revealed that CB particles were dispersed in the LMWPE matrix, but not on the UHMWPE fibrils. It turns out that the network structure of UHMWPE, with a very low melt index, plays an important role in removing the negative temperature coefficient effect usually observed for the LMWPE-CB system and in ensuring the quality and the reproducibility of the PTC effect. Received: 31 August 1998 Accepted in revised form: 4 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号