首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor segmentation from magnetic resonance imaging (MRI) is important for volume estimation and visualization of nasopharyngeal carcinoma (NPC). In some cases, segmentation using the general multispectral (GM) method often obtained poor results due to the high false positives caused by complex anatomic structures and serious overlap in feature space. In this study, a texture combined multispectral fuzzy clustering (TCMFC) segmentation algorithm was proposed. A texture measure of T1-weighted (T1) MR image was introduced by calculating the two-order central statistical information of every pixel within a window after the window convolution operation. The texture measure and the intensities in T1 and contrast-enhanced T1 images formed the new 3-D feature vector for fuzzy clustering implemented by semi-supervised fuzzy c-means (SFCM). Testing showed that by reducing the false positives significantly, the TCMFC method achieved improved segmentation results, compared with the GM method.  相似文献   

2.
This paper presents MRI segmentation techniques to differentiate abnormal and normal tissues in Ophthalmology using fuzzy clustering algorithms. Applying the best-known fuzzy c-means (FCM) clustering algorithm, a newly proposed algorithm, called an alternative fuzzy c-mean (AFCM), was used for MRI segmentation in Ophthalmology. These unsupervised segmentation algorithms can help Ophthalmologists to reduce the medical imaging noise effects originating from low resolution sensors and/or the structures that move during the data acquisition. They may be particularly helpful in the clinical oncological field as an aid to the diagnosis of Retinoblastoma, an inborn oncological disease in which symptoms usually show in early childhood. For the purpose of early treatment with radiotherapy and surgery, the newly proposed AFCM is preferred to provide more information for medical images used by Ophthalmologists. Comparisons between FCM and AFCM segmentations are made. Both fuzzy clustering segmentation techniques provide useful information and good results. However, the AFCM method has better detection of abnormal tissues than FCM according to a window selection. Overall, the newly proposed AFCM segmentation technique is recommended in MRI segmentation.  相似文献   

3.
为改进传统模糊C均值聚类(FCM)算法对初始聚类中心敏感、易陷入局部收敛、抗噪性差、计算量大的问题,提出一种新的基于改进粒子群算法的快速模糊聚类图像分割方法(PSOFFCM)。方法首先利用自适应中值滤波对图像进行滤波处理,增强算法的鲁棒性;然后,将图像像素灰度值映射到二维直方图特征空间,作为聚类样本,优化FCM的目标函数,减少图像分割的计算量;最后,利用PSO算法代替FCM的梯度迭代过程,减弱了算法对初始聚类中心的依赖,同时增强全局搜索能力。实验结果表明,该方法不仅克服了FCM算法对初始聚类中心的依赖,而且抗噪能力强,收敛速度快,分割精度明显优于传统FCM。  相似文献   

4.
The need for anatomical coverage and multi-spectral information must be balanced against examination and processing time to ensure high-quality, feasible imaging protocols for clinical research of cerebral development in normal-appearing brains. The focus of this study was to create and assess models to estimate total cerebral volumes of gray matter, white matter, and cerebrospinal fluid (CSF) from anatomically defined sub-samples of full clinical examinations. Pediatric patients (18F, 11M; aged 1.7 to 18.7, median 5.2 years) underwent a clinical imaging protocol consisting of 3 mm contiguous T1-, T2-, PD-, and FLAIR-weighted images after obtaining informed consent. Magnetic resonance imaging (MRI) sets were registered, RF-corrected, and then analyzed with a hybrid neural network segmentation and classification algorithm to identify normal brain parenchyma. The correlation between the image subsets and the total cerebral volumes of gray matter, white matter and CSF were examined through linear regression analyses. Five sub-sampled sets were defined and assessed in each patient to produce estimation models which were all significantly correlated (p < 0.001) with the total cerebral volumes of gray matter, white matter, and CSF. Volumes were estimated from as little as a single representative slice requiring minimal processing time, 27 min, but with an average estimation error of approximately 6%. Larger sub-samples of approximately three-quarters of the full cerebral volume required much more processing time, 2 h and 4 min, but produced estimates with an average error less than 2%. This study demonstrated that investigators can choose the amount of cerebrum sampled to optimize the acquisition and processing time against the degree of accuracy needed in the total cerebral volume estimates.  相似文献   

5.
Multislice proton magnetic resonance spectroscopic imaging (1H MRSI) at 25 ms echo time was used to measure concentrations of myo-inositol (mI), N-acetylaspartate (NAA), and creatine (Cr) and choline (Cho) in ten normal subjects between 22 and 84 years of age (mean age 44 +/- 18 years). By co-analysis with MRI based tissue segmentation results, metabolite distributions were analyzed for each tissue type and for different brain regions. Measurement reliability was evaluated using intraclass correlation coefficients (ICC). Significant differences in metabolite distributions were found for all metabolites. mI of frontal gray matter was 84% of parietal gray matter and 87% of white matter. NAA of frontal gray matter was 86% of parietal gray matter and 85% of white matter. Cho of frontal gray matter was 125% of parietal gray matter and 59% of white matter and Cho of parietal gray matter was 47% of white matter. Cr of parietal gray matter was 113% of white matter. Reliability was relatively high (ICC from.70 to.93) for all metabolites in white matter and for NAA and Cr in gray matter, though limited (ICC less than.63) for mI and Cho in gray matter. These findings indicate that voxel gray/white matter contributions, regional variations in metabolite concentrations, and reliability limitations must be considered when interpreting 1H MR spectra of the brain.  相似文献   

6.
马姣婷  贾世英  吴伟霖 《应用声学》2016,24(9):195-197, 202
针对模糊C-均值聚类算法的单一隶属度不能充分描述图像不确定性,且聚类过程中忽略像素空间关系的问题,提出一种基于空间信息的直觉模糊C-均值算法;该算法选取3×3的模板计算邻域像素灰度均值;并引入权重项,来控制灰度信息和空间信息各自所占的比重,同时用犹豫度更新直觉模糊集的隶属度函数;对常用标准图像的仿真结果表明,该算法能更好地保留图像细节信息,得到更加理想的图像分割效果。  相似文献   

7.
Texture analysis was performed in three different MRI units on T1 and T2-weighted MR images from 10 healthy volunteers and 63 patients with histologically confirmed intracranial tumors. The goal of this study was a multicenter evaluation of the usefulness of this quantitative approach for the characterization of healthy and pathologic human brain tissues (white matter, gray matter, cerebrospinal fluid, tumors and edema). Each selected brain region of interest was characterized with both its mean gray level values and several texture parameters. Multivariate statistical analyses were then applied in order to discriminate each brain tissue type represented by its own set of texture parameters. Texture analysis was previously performed on test objects to evaluate the method dependence on acquisition parameters and consequently the interest of a multicenter evaluation. Even obtained on different sites with their own acquisition routine protocol, MR brain images contain textural features that can reveal discriminant factors for tissue classification and image segmentation. It can also offer additional information in case of undetermined diagnosis or to develop a more accurate tumor grading.  相似文献   

8.
The combined T1, T2 and secular-T2 pixel frequency distributions of 24 adult human brains were studied in vivo using a technique based on the mixed-TSE pulse sequence, dual-space clustering segmentation and histogram gaussian decomposition. Pixel frequency histograms of whole brains and the four principal brain compartments were studied comparatively and as function of age. For white matter, the position of the T1 peak correlates with age (R2 =.7868) when data are fitted to a quadratic polynomial. For gray matter, a weaker age correlation is found (R2 =.3687). T2 and secular-T2 results are indicative of a weaker correlation with age. The technique and preliminary results presented herein may be useful for characterizing normal as well as abnormal aging of the brain, and also for comparison with the results obtained with alternative quantitative MRI methodologies.  相似文献   

9.
Functional magnetic resonance imaging (fMRI) often relies on a hemodynamic response function (HRF), the stereotypical blood oxygen level dependent (BOLD) response elicited by a brief (< 4 s) stimulus. Early measurements of the HRF used coarse spatial resolutions (≥ 3 mm voxels) that would generally include contributions from white matter, gray matter, and the extra-pial compartment (the space between the pial surface and skull including pial blood vessels) within each voxel. To resolve these contributions, high-resolution fMRI (0.9-mm voxels) was performed at 3 T in early visual cortex and its apposed white-matter and extra-pial compartments. The results characterized the depth dependence of the HRF and its reliability during nine fMRI sessions. Significant HRFs were observed in white-matter and extra-pial compartments as well as in gray matter. White-matter HRFs were faster and weaker than in the gray matter, while extra-pial HRFs were comparatively slower and stronger. Depth trends of the HRF peak amplitude were stable throughout a broad depth range that included all three compartments for each session. Across sessions, however, the depth trend of HRF peak amplitudes was stable only in the white matter and deep-intermediate gray matter, while there were strong session-to-session variations in the superficial gray matter and the extra-pial compartment. Thus, high-resolution fMRI can resolve significant and dynamically distinct HRFs in gray matter, white matter, and extra-pial compartments.  相似文献   

10.
Previous spectroscopic imaging studies of temporal lobe epilepsy have used comparisons of metabolite content or ratios to lateralize the seizure focus. Although highly successful, these studies have shown significant variations within each of the groups of healthy subjects and patients. This variation may arise from the natural differences seen in metabolite concentration in gray and white matter, the complex anatomy seen about the hippocampus, and the large voxels typically employed at 1.5 T. Using a 4.1 T whole body system, we have acquired spectroscopic images with 0.5 cc nominal voxels (1 cc after filtering) to evaluate the regional variation in metabolite content of the hippocampus, temporal gray and white matter, midbrain, and cerebellar vermis. Using a threshold value of 0.90 for CR/NAA, a value 90% of all normal hippocampal voxels lay below, we have correctly identified the presence of epileptogenic tissue in patients with unilateral as well as bilateral seizures. By using comparisons to healthy values of the CR/NAA ratio, this method enables the visualization of bilateral disease and provides information on the extent of gray matter involvement.  相似文献   

11.
The occurrence of touching objects in images of particulate systems is very common especially in the absence of dispersion methods during image acquisition. The separation of these touching particles is essential before accurate estimation of particle size and shape can be achieved from these images. In the current work, clustering approaches based on the fuzzy C‐means algorithm are employed to identify the touching particle regions. Firstly, clustering in the multidimensional space of image features, e.g., standard deviation, gradient and range calculated in a certain neighborhood of each pixel, is performed to trap the touching regions. Then, in a novel proposed method, the clustering of pixel intensity itself into two fuzzy clusters is performed and a feature, referred to as the ‘Fuzzy Range', is calculated for each pixel from its membership values in both clusters and is presented as a distinguishing feature of the touching regions. Both approaches are compared and the superiority of the latter method in terms of the non‐necessity of neighborhood based calculations and minimum disfiguration is elucidated. The separation methods presented herein do not make any assumption about the shape of the particle as is undertaken in many methods reported elsewhere. The technique is proven to minimize greatly the deleterious effects of over‐segmentation, as is the case with traditional watershed segmentation techniques, and consequently, it results in a superior performance.  相似文献   

12.
Segmentation of brain tissue in diffusion MRI image space has some unique advantages. A novel segmentation method using the direction-averaged diffusion weighted imaging (DWI) signal is proposed. Two images can be obtained from the fitting of the direction-averaged DWI signal as a function of b-value: one with superior contrast between the gray matter and white matter; one with prominent CSF contrast. A pseudo T1 weighted image can be constructed and standard segmentation tools can be applied. The method was tested on the HCP dataset using SPM12, and showed good agreement with segmentation using the T1 weighted image with the same resolution. The Dice score was all greater than 0.88 for GM or WM with full DWI data and very stable against subsampling of the DWI data in number of diffusion directions, number of shells, and spatial resolution.  相似文献   

13.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


14.
Automated brain magnetic resonance image (MRI) segmentation is a complex problem especially if accompanied by quality depreciating factors such as intensity inhomogeneity and noise. This article presents a new algorithm for automated segmentation of both normal and diseased brain MRI. An entropy driven homomorphic filtering technique has been employed in this work to remove the bias field. The initial cluster centers are estimated using a proposed algorithm called histogram-based local peak merger using adaptive window. Subsequently, a modified fuzzy c-mean (MFCM) technique using the neighborhood pixel considerations is applied. Finally, a new technique called neighborhood-based membership ambiguity correction (NMAC) has been used for smoothing the boundaries between different tissue classes as well as to remove small pixel level noise, which appear as misclassified pixels even after the MFCM approach. NMAC leads to much sharper boundaries between tissues and, hence, has been found to be highly effective in prominently estimating the tissue and tumor areas in a brain MR scan. The algorithm has been validated against MFCM and FMRIB software library using MRI scans from BrainWeb. Superior results to those achieved with MFCM technique have been observed along with the collateral advantages of fully automatic segmentation, faster computation and faster convergence of the objective function.  相似文献   

15.
A novel segmentation method based on wavelet transform is presented for gray matter, white matter and cerebrospinal fluid in thin-sliced single-channel brain magnetic resonance (MR) scans. On the basis of the local image model, multicontext wavelet-based thresholding segmentation (MCWT) is proposed to classify 2D MR data into tissues automatically. In MCWT, the wavelet multiscale transform of local image gray histogram is done, and the gray threshold is gradually revealed from large-scale to small-scale coefficients. Image segmentation is independently performed in each local image to calculate the degree of membership of a pixel to each tissue class. Finally, a strategy is adopted to integrate the intersected outcomes from different local images. The result of the experiment indicates that MCWT outperforms other traditional segmentation methods in classifying brain MR images.  相似文献   

16.
苹果的可见光谱目标的高效、精准识别是实现果园测产或机器自动采摘作业的关键,由于绿色目标果实与枝叶背景颜色较为相近,因此绿色苹果的识别成为新的挑战。再由于果园实际复杂环境因素影响,如光照、阴雨、枝叶遮挡、目标重叠等情况,现有的目标果实识别方案难以满足测产或自动采摘的实时、精准作业需求。为更好地实现果园自然环境中绿色目标果实识别问题,提出一种新的核密度估计优化的聚类分割算法(kernel density clustering, KDC)。新算法首先利用简单的迭代聚类(simple linear iterative cluster, SLIC)算法将目标图像分割成不规则块,集结小区域内近似像素点组成超像素区域,计算单元由像素点转变为超像素区域,有效降低数据复杂度,且SLIC算法简化图像数据时可有效避免目标果实轮廓模糊;基于超像素构造R-B区域均值和G-B区域均值的二维特征分量,建立针对聚类分析的青苹果颜色特征空间。然后借助密度峰值聚类中心计算绿色苹果图像每个数据点的局部密度和局部差异度,为解决分割边界模糊问题,在计算过程中利用核密度估计计算局部密度,确保局部密度在不同复杂场景中的清晰准确表达,以更精准找出被低密度区域分割的高密度区域,实现任意形状的聚类。最后以局部密度和距离构造寻找聚类中心的决策图,该研究采用双排序算法实现聚类中心的自动选择,完成目标果实的高效分割。新算法通过SLIC算法获得图像的超像素区域表示,数据点的局部密度通过核密度估计得到,大幅降低算法的计算量,实现目标图像的高效、精准分割。为更好地验证新算法性能,实验采集多光照、阴雨等环境下的遮挡、重叠等复杂目标图像,以分割效率、分割有效性、假阳性、假阴性等指标进行评价,通过对比k-means聚类算法、meanshift聚类算法、FCM算法和DPCA算法,该研究提出的新算法分割性能均最优。  相似文献   

17.
提出了一种基于Parzen窗的半监督模糊C-均值(Semi-supervised Fuzzy C-Means Based on Parzen window,PSFCM)聚类算法。根据训练样本确定出模糊C-均值(Fuzzy C-Means,FCM)的初始聚类中心;利用Parzen窗法计算出测试样本对各类状态的隶属度后,重新定义了隶属度迭代公式。通过齿轮箱磨损实验台模拟了齿轮箱的2种典型磨损故障并采集了油样。选取实验油样光谱分析数据中代表性元素Fe,Si,B的浓度值作为分析数据集的3维特征量,分别进行了FCM聚类和PSFCM聚类分析。聚类结果为:FCM聚类的正确率为48.9%,而融入了监督信息的PSFCM聚类的正确率为97.4%。实验说明,将PSFCM算法引入到油液原子光谱分析,降低了对人为经验和大量故障数据的依赖,提高了齿轮箱磨损故障诊断的准确度。  相似文献   

18.
Normative measurements of brain gray matter and white matter tissue volumes across the lifespan have not yet been established. The purpose of this article was to use mathematical modeling and analytical functions to demonstrate the growth trajectory of gray matter and white matter from age 0 to age 90. For each gender, brain weight functions were generated by utilizing existing autopsy data from 4400 subjects. Brain gray matter, white matter and lateral ventricular volumes were measured from 39 MR volumes of normal individuals. These were converted to weight by multiplying the tissue volumes by the specific gravity of that tissue. White matter volumes were described by a saturating exponential function, and the gray matter volume function was calculated by subtracting the white matter weight function from the brain weight function. For each gender, equations were generated for white matter and gray matter volumes as a function of age over the lifespan.  相似文献   

19.
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement.  相似文献   

20.
Handcrafted fuzzy rules for tissue classification   总被引:1,自引:1,他引:0  
This article proposes a handcrafted fuzzy rule-based system for segmentation and identification of different tissue types in magnetic resonance (MR) brain images. The proposed fuzzy system uses a combination of histogram and spatial neighborhood-based features. The intensity variation from one type of tissue to another is gradual at the boundaries due to the inherent nature of the MR signal (MR physics). A fuzzy rule-based approach is expected to better handle these variations and variability in features corresponding to different types of tissues. The proposed segmentation is tested to classify the pixels of the T2-weighted axial MR images of the brain into three primary tissue types: white matter, gray matter and cerebral-spinal fluid. The results are compared with those from manual segmentation by an expert, demonstrating good agreement between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号