首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Microfluidic devices have been fabricated on polycarbonate (PC) substrates by use of a hot embossing method using a silicon master template. By adding auxiliary lines around the functional channel on the silicon master, its lifetime was significantly prolonged and the bonding strength of the PC cover plate to the microfluidic chip was greatly improved. More than 300 polycarbonate microfluidic chips have been replicated with the same silicon mold. CE separation of X-174/HaeIII DNA restriction fragments, with high resolution efficiency and good reproducibility, was achieved on these devices using the low-viscosity sieving matrix HPMC-50. Temperature was found to have a significant effect on separation efficiency.  相似文献   

2.
Du XG  Fang ZL 《Electrophoresis》2005,26(24):4625-4631
A simple and robust static adsorptive (dynamic) coating process using 2% hydroxyethylcellulose was developed for surface modification of poly(methyl methacrylate) (PMMA) microfluidic chips for DNA separations, suitable for usage over extended periods, involving hundreds of runs. The coating medium was also used as a sieving matrix for the DNA separations following the coating process. Four consecutive static treatments, by simply filling the PMMA chip channels with sieving matrix once every day, were required for obtaining a stable coating and optimum performance. The performance of the coated chips at different phases of the coating process was studied by consecutive gel electrophoretic separations with LIF detection using a PhiX-174/HaeIII DNA digest sample. The coated chip, with daily renewal of the sieving matrix, showed high stability in performance during a 25-day period of systematic study, involving more than 100 individual runs. The performance of the coated chip also remained almost the same after 3 months of continuous usage, during which over 200 separations were performed. The average precision of migration time for the 603-bp fragment was 1.31% RSD (n = 6) during the 25-day study, with a separation efficiency of 6.5 x 10(4) plates (effective separation length 5.4 cm).  相似文献   

3.
Chen YH  Chen SH 《Electrophoresis》2000,21(1):165-170
Microfluidic devices were fabricated on poly(methyl methacrylate) (PMMA) substrate using two small-diameter (79 microm) wires to create a cross impression in plastics softened by low-temperature heating. The resulting channels had a rounded shape and 75 microm in depth. The variability of the channel dimensions was found to be less than 6% from different locations of the same channel and less than 10% between chips. Moreover, the fabricated PMMA chip appeared to sustain an electric field strength up to 300 V/cm without significant Joule heating. The function of resulting devices for electrophoretic injection and separation of a DNA size marker, HaeIII digest of (phiX174, was also characterized. Results indicated that all of the 11 DNA fragments of the size marker could be identified in less than 3 min with relative standard deviations less than 0.4% and 8% for migration time and peak area, respectively. Moreover, with the use of near infrared (IR) dye, fluorescence signals of the higher molecular weight fragments (> 603 bp in length) could be detected at total DNA concentrations as low as 0.1 microg/mL (S/N = 4.2). In conclusion, the performance of wire-imprinted devices on PMMA substrate were comparable to those fabricated by other professional means.  相似文献   

4.
We have evaluated double-stranded DNA separations in microfluidic devices which were designed to couple a sample preconcentration step based on isotachophoresis (ITP) with a zone electrophoretic (ZE) separation step as a method to increase the concentration limit of detection in microfluidic devices. Developed at ACLARA BioSciences, these LabCard trade mark devices are plastic 32 channel chips, designed with a long sample injection channel segment to increase the sample loading. These chips were designed to allow stacking of the sample into a narrow band using discontinuous ITP buffers, and subsequent separation in the ZE mode in sieving polymer solutions. Compared to chip ZE, the sensitivity was increased by 40-fold and we showed baseline resolution of all fragments in the PhiX174/HaeIII DNA digest. The total analysis time was 3 min/sample, or less than 100 min per LabCard device. The resolution for multiplexed PCR samples was the same as obtained in chip ZE. The limit of detection was 9 fg/microL of DNA in 0.1xpolymerase chain reaction (PCR) buffers using confocal fluorescence detection following 488 nm laser excitation with thiazole orange as the fluorescent intercalating dye.  相似文献   

5.
This paper deals with dynamic coating of the microchannels fabricated on poly(methyl methacrylate) (PMMA) chips and DNA separation by microchip electrophoresis (MCE). After testing a number of polymers, including 2-hydroxyethyl cellulose, hydroxypropylmethyl cellulose, different sizes of poly(ethylene oxide) (PEO), and poly(vinyl pyrrolidone) (PVP), we found that coating of the PMMA microchannels with PEO(Mr = 6.0 x 10(5) g/mol) on the first layer is essential to minimize the interaction of DNA with PMMA surface. To achieve high efficiency, multilayer coating of PMMA chips with PEO, PVP, and PEO containing gold nanoparticles [PEO(GNP)] is important. A 2-(PEO-PVP)-PEO(GNP) PMMA chip, which was repeatedly coated with 1.0% PEO and 5.0% PVP twice, and then coated with 0.75% PEO(GNP) each for 30 min, provided a high efficiency (up to 1.7 x 10(6) plates/m) for the separation of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BgiI digest and pBR 328/HinfI digest) when using 0.75% PEO(GNP). With such a high efficiency, we demonstrated the separation of hsp65 gene fragments of Mycobacterium HaeIII digests by MCE within 90 s. The advantages of this approach to DNA analysis include ease of filling the microchannel with 0.75% PEO(GNP), rapidity, and reproducibility.  相似文献   

6.
Chen Y  Zhang L  Chen G 《Electrophoresis》2008,29(9):1801-1814
Poly(methyl methacrylate) (PMMA) is particularly useful for microfluidic chips with the features of low price, excellent optic transparency, attractive mechanical and chemical properties, ease of fabrication and modification, biocompatibility, etc. During the past decade, significant progress in the PMMA microfluidic chips has occurred. This review, which contains 120 references, summarizes the recent advances and the key strategies in the fabrication, modification, and application of PMMA microfluidic chips. It is expected that PMMA microchips should find a wide range of applications and will lead to the creation of truly disposable microfluidic devices.  相似文献   

7.
B F Liu  Q G Xie  Y T Lu 《Analytical sciences》2001,17(11):1253-1256
It was demonstrated that a capillary electrophoresis (CE) method with a non-gel sieving solution has been developed to identify the orientation of DNA fragments in recombinant plasmids in molecular biology. The influences of the concentration of sieving polymer HEC, the applied electric field strength and sampling on CE separation were analyzed concerning the optimization of separation. YO-PRO-1 was used as a DNA intercalating reagent to facilitate fluorescence detection. Under the chosen conditions (buffer, 1 x TBE containing 1 microM YO-PRO-1 and 1.2% HEC; applied electric field strength, 200 V/cm; electrokinetic sampling: time, 5 s; voltage, -6 kV), three DNA markers (phi 174/HaeIII, pBR322/HaeIII and lambda DNA/HindIII) were tested for further evaluating the relationship between the DNA size and the mobility. The established CE method conjugated with the enzymatic approach was successfully applied to identifying the DNA orientation of recombinant plasmid in transgene operations of a newly cloned gene from Arabidopsis Thaliana.  相似文献   

8.
Wu D  Luo Y  Zhou X  Dai Z  Lin B 《Electrophoresis》2005,26(1):211-218
A poly(dimethylsiloxane) (PDMS) microfluidic chip surface was modified by multilayer-adsorbed and heat-immobilized poly(vinyl alcohol) (PVA) after oxygen plasma treatment. The reflection absorption infrared spectrum (RAIRS) showed that 88% hydrolyzed PVA adsorbed more strongly than 100% hydrolyzed one on the oxygen plasma-pretreated PDMS surface, and they all had little adsorption on original PDMS surface. Repeating the coating procedure three times was found to produce the most robust and effective coating. PVA coating converted the original PDMS surface from a hydrophobic one into a hydrophilic surface, and suppressed electroosmotic flow (EOF) in the range of pH 3-11. More than 1,000,000 plates/m and baseline resolution were obtained for separation of fluorescently labeled basic proteins (lysozyme, ribonuclease B). Fluorescently labeled acidic proteins (bovine serum albumin, beta-lactoglobulin) and fragments of dsDNA phiX174 RF/HaeIII were also separated satisfactorily in the three-layer 88% PVA-coated PDMS microchip. Good separation of basic proteins was obtained for about 70 consecutive runs.  相似文献   

9.
D Liang  L Song  S Zhou  V S Zaitsev  B Chu 《Electrophoresis》1999,20(14):2856-2863
A new separation medium, poly(N-isopropylacrylamide)-g-poly(ethyleneoxide) (PNI-PAM-g-PEO) solution, used for double-stranded (ds) DNA separation by capillary electrophoresis (CE) is presented. This type of grafted copolymer has a good self-coating ability for quartz capillary tubing and a slightly temperature-dependent viscosity-adjustable property, making it easier to use. One bp resolution was achieved within 12.5 min by using 8% w/v PNIPAM-gPEO in 1 x TBE (Tris-borate-ethylenediaminetetraaceticacid) buffer with an effective column length of 10 cm and an applied electric field strength of 200 V/cm. The PNIPAM-g-PEO solutions had a high sieving ability for relatively small sized DNAs with the relative standard derivation for the first 10 runs being less than 0.9% by using the same polymer solution. With 8% w/v PNIPAM-g-PEO solution in a 1.5 cm column and 2400 V as the running voltage, phiX174/HaeIII digest could be clearly separated within 24 s.  相似文献   

10.
Wang SL  Fan XF  Xu ZR  Fang ZL 《Electrophoresis》2005,26(19):3602-3608
A miniaturized CE system has been developed for fast DNA separations with sensitive fluorimetric detection using a rectangle type light-emitting diode (LED). High sensitivity was achieved by combining liquid-core waveguide (LCW) and lock-in amplification techniques. A Teflon AF-coated silica capillary on a compact 6x3 cm baseplate served as both the separation channel for CE separation and as an LCW for light transmission of fluorescence emission to the detector. An electronically modulated LED illuminated transversely through a 0.2 mm aperture, the detection point on the LCW capillary without focusing, and fluorescence light was transmitted to the capillary outlet. To simplify the optics and enhance collection of light from the capillary outlet, an outlet reservoir was designed, with a light transmission window, positioned directly in front of a photomultiplier tube (PMT), separated only by a high pass filter. Automated sample introduction was achieved using a sequential injection system through a split-flow interface that allowed effective release of gas bubbles. In the separation of a phiX174 HaeIII DNA digest sample, using ethidium bromide as labeling dye, all 11 fragments of the sample were effectively resolved in 400 s, with an S/N ratio comparable to that of a CE system with more sophisticated LIF.  相似文献   

11.
Liu B  Lin D  Xu L  Lei Y  Bo Q  Shou C 《色谱》2012,30(5):440-444
利用亲水性超支化聚酰胺酯通过化学键合的方法对聚甲基丙烯酸甲酯(PMMA)微流控芯片的表面进行改性。对改性后PMMA微流控芯片的表面进行了接触角的测定,利用扫描电子显微镜(SEM)和体视显微镜观察了改性后芯片的表面形貌。结果表明,改性后的PMMA微流控芯片表面形成了一层均匀、致密、连续的亲水性涂层,芯片表面的亲水性得到了明显提高,接触角由未改性时的89.9°降低到29.5°。改性后芯片的电渗流较之改性前明显降低。利用芯片对腺苷和L-赖氨酸两种生物分子进行了分离检测。两种生物分子实现了完全分离,所得到的检测峰峰形尖锐,分离清晰。对腺苷和L-赖氨酸的分离柱效(理论塔板数)分别高达8.44×104 塔板/m和9.82×104 塔板/m,分离度(Rs)达到5.31,均远远高于未改性的芯片。改性后的芯片具有良好的分离时间重现性。本研究为提高PMMA微流控芯片的亲水性和应用范围提供了一种新的有效方法。  相似文献   

12.
Xu F  Jabasini M  Liu S  Baba Y 《The Analyst》2003,128(6):589-592
On a polymethylmethacrylate (PMMA) microchip, double-stranded DNA fragments with a wide size range from 50 bp to 20 kbp were separated by two polymer solutions. One was a hydroxypropylmethylcellulose-4000 (HPMC-4000) solution of 1.3% (w/v) to separate fragments below 590 bp, and another was a mixed four molecular weight poly(ethylene oxide) solution at a total concentration of 0.1% to separate fragments above 520 bp. The widths at half height (wh) of the fragments had a good relationship with their migration times (tR) in both polymer solutions. Such a relationship was suitable for obtaining the wh values of unresolved peaks, calculating the resolution of two adjacent fragments, and optimizing microchip separation matrices. Based on the relativity, a low viscosity medium containing 2% HPMC-50 and 8% glucose was optimized for high-performance separation of a phiX174 HaeIII restriction fragment digest.  相似文献   

13.
W Shen  M Li  C Ye  L Jiang  Y Song 《Lab on a chip》2012,12(17):3089-3095
Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.  相似文献   

14.
Packaging of microfluidic chips via interstitial bonding technique.   总被引:2,自引:0,他引:2  
In this paper, we describe an interstitial bonding technique for packaging of microfluidic chips. The cover plate is first placed on top of the microfluidic chip, followed by dispensing the UV-curable resin into the resin-loading reservoirs. With the interstitial space between the cover plate and the microfluidic chip connecting to the loading reservoirs, the UV-curable resin wicks through capillary force action and hydrostatic pressure generated by the liquid level in the resin-loading reservoirs. When reaching the microchannels, the UV-curable resin stops flowing into the microchannels due to the force balance between the surface tension and hydrostatic pressure. The assembly is then placed under the UV light, followed by further curing in the thermal oven. It is found that there is no leakage from the bonded microfluidic chips and a good DNA separation result was obtained by using the microfluidic chips as fabricated. This bonding technique is relatively simple and fast, which can be applied to the packaging of microfluidic chips made from hybrid materials with complicated designs as long as the interstitial space connects to the loading reservoirs.  相似文献   

15.
Cheng JY  Hsieh CJ  Chuang YC  Hsieh JR 《The Analyst》2005,130(6):931-940
This study develops a novel temperature cycling strategy for executing temperature cycling reactions in laser-etched poly(methylmethacrylate) (PMMA) microfluidic chips. The developed microfluidic chip is circular in shape and is clamped in contact with a circular ITO heater chip of an equivalent diameter. Both chips are fabricated using an economic and versatile laser scribing process. Using this arrangement, a self-sustained radial temperature gradient is generated within the microfluidic chip without the need to thermally isolate the different temperature zones. This study demonstrates the temperature cycling capabilities of the reported microfluidic device by a polymerase chain reaction (PCR) process using ribulose 1,5-bisphosphate carboxylase large subunit (rbcL) gene as a template. The temperature ramping rate of the sample inside the microchannel is determined from the spectral change of a thermochromic liquid crystal (TLC) solution pumped into the channel. The present results confirm that a rapid thermal cycling effect is achieved despite the low thermal conductivity of the PMMA substrate. Using IR thermometry, it is found that the radial temperature gradient of the chip is approximately 2 degrees C mm(-1). The simple system presented in this study has considerable potential for miniaturizing complex integrated reactions requiring different cycling parameters.  相似文献   

16.
Inexpensive and permanently modified poly(methyl methacrylate)(PMMA) microchips were fabricated by an injection-molding process. A novel sealing method for plastic microchips at room temperature was introduced. Run-to-run and chip-to-chip reproducibility was good, with relative standard deviation values between 1-3% for the run-to-run and less than 2.1% for the chip-to-chip comparisons. Acrylonitrile-butadiene-styrene (ABS) was used as an additive in PMMA substrates. The proportions of PMMA and ABS were optimized. ABS may be considered as a modifier, which obviously improved some characteristics of the microchip, such as the hydrophilicity and the electro-osmotic flow (EOF). The detection limit of Rhodamine 6G dye for the modified microchip on the home-made microchip analyzer showed a dramatic 100-fold improvement over that for the unmodified PMMA chip. A detection limit of the order of 10(-20) mole has been achieved for each injected psiX-174/HaeIII DNA fragment with the baseline separation between 271 and 281 bp, and fast separation of 11 DNA restriction fragments within 180 seconds. Analysis of a PCR product from the tobacco ACT gene was performed on the modified microchip as an application example.  相似文献   

17.
L Song  D Fang  R K Kobos  S J Pace  B Chu 《Electrophoresis》1999,20(14):2847-2855
The separation of double-stranded DNA (dsDNA) fragments in polymethylmethacrylate (PMMA) capillary electrophoresis (CE) chips by using E99P69E99 as a separation medium has been demonstrated. The PMMA CE chips were simply manufactured by micromachining and adhesive tape sealing. To make the separation channel compatible with the separation medium, a dynamic nonionic surfactant coating procedure was developed, which made the plastic separation channel sufficiently hydrophilic to allow the separation medium to fill the channel by capillary action. Subsequent separation of DNA fragments was successful with a separation efficiency of the order of 10(4) theoretical plates over an effective separation distance of 1.5 cm. By using an applied electric field strength of 200 V/cm, the separation of low DNA mass ladder was completed within 5 min. The simple coating procedure, together with the self-assembled viscosity-adjustable separation medium, should be useful to meet some of the essential requirements for developing single-use disposable CE chips. Coating the channels with polymer blends of PMMA and the separation medium also showed promise.  相似文献   

18.
Plastic materials have the potential to substitute for glass substrates used in microfluidic and microTAS systems adding flexibility in materials' choices. Optical quality plastic materials with a low autofluorescence are crucial for optimal detection by fluorescence and laser induced fluorescence techniques. This paper summarizes a series of optical investigations on commercially available plastic chip materials (PMMA, COC, PC, PDMS) and chips made from those materials. Intrinsic optical constants of plastic materials-refractive index for bulk materials-determined by spectroscopic ellipsometry and transmission spectroscopy in the visible range are presented. The laser-induced autofluorescence of materials and chips was assessed at four laser wavelengths, namely, 403, 488, 532 and 633 nm. Considerable bleaching of the autofluorescence was observed under continuous laser illumination. Overall, the longer wavelength laser excitation sources yielded less autofluorescence. PDMS exhibited the least autofluorescence and was comparable to BoroFloat glass. In all cases, chips exhibited slightly higher autofluorescence than the raw plastic materials from which they had been made.  相似文献   

19.
Replica microchips for capillary array electrophoresis containing 10 separation channels (50 microm width, 50 microm depth and 100 microm pitch) and a network of sacrificial channels (100 microm width and 50 microm depth) were successfully fabricated on a poly(methyl methacrylate) (PMMA) substrate by injection molding. The strategy involved development of moving mask deep X-ray lithography to fabricate an array of channels with inclined channel sidewalls. A slight inclination of channel sidewalls, which can not be fabricated by conventional deep X-ray lithography, is highly required to ensure the release of replicated polymer chips from a mold. Moreover, the sealing of molded PMMA multichannel chips with a PMMA cover film was achieved by a novel bonding technique involving adhesive printing and a network of sacrificial channels. An adhesive printing process enables us to precisely control the thickness of an adhesive layer, and a network of sacrificial channels makes it possible to remove air bubbles and an excess adhesive, which are crucial to achieving perfect sealing of replica PMMA chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to simultaneously monitor electrophoretic separations in ten micro-channels with laser-induced fluorescence detection. High-speed and high-throughput separations of a 100 bp DNA ladder and phi X174 Hae III DNA restriction fragments have been demonstrated using a 10-channel PMMA chip. The current work establishes the feasibility of mass production of PMMA multichannel chips at a cost-effective basis.  相似文献   

20.
Two photon excited (TPE) fluorescence detection was applied to native fluorescence detection of aromatics in microchip electrophoresis (MCE). This technique was evaluated as an alternative to common one photon excitation in the deep UV spectral range. TPE enables fluorescence detection of unlabeled aromatic compounds, even in non-deep UV-transparent microfluidic chips. In this study, we demonstrate the proof of concept of native TPE fluorescence detection of small aromatics in commercial microfluidic glass chips. Label-free TPE fluorescence detection of native proteins and small aromatics in MCE was achieved within the micromolar concentration range, utilising 420 nm excitation light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号