首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coincidence Mössbauer spectra of57Co-labelled [CoFe2O(CH3CO2)6(H2O)3] were determined at 78 K and 298 K with three timewindows of 0–50, 50–150 and 150–300 ns. Temperature dependence in the spectral shape ascribed to an intramolecular electron transfer was observed in all the time-window spectra, while little time dependence was observed. The results indicate that57Fe atoms produced by EC-decay are incorporated in a chemical environment similar to that of the parent57Co atoms, forming a trinuclear FeIIFe2 III structure at an early stage after the EC-decay.after April 1, 1991.  相似文献   

2.
A hexacyanoferrate(III) salt [N(C2H5)4]3[Fe(CN)6].5H2O (1)crystallized in a monoclinic space group (P21, Z = 2) with the nearest neighboring Fe-Fe distance of 8.20 Åound 1 distinctly showed magnetically-relaxed 57Fe Mössbauer spectra below ca. 40 K. The Mössbauer line width at 4.2 K was much larger than that of K3[Fe(CN)6], which is ascribable to the long Fe-Fe distance in 1. Further broadened spectra were observed for [N(n-C4H9)4]3[Fe(CN)6].xH2O (2).  相似文献   

3.
KX-ray-gated emission Mössbauer spectra of57Co-labelled CoF2 and CoF2.2H2O were measured at room temperature, using the coincidence technique. A difference was found in the relative intensity of57Fe(II)/57Fe(III) between the X-ray-gated and non-gated emission spectra. The results are explained in terms of local radiolytic effects of water of crystallization and the chemical effects associated with the de-excitation processes caused by EC-decay.  相似文献   

4.
The crystal structures of oxo-centered trineclear cobalt-iron chloroacetate complex [CoIIFe 2 III O(CH2ClCO2)6(H2O)3]·3H2O (1) was compared with that of previously reported trinuclear iron complex [FeIIFe 2 III O(CH2ClCO2)6(H2O)3]·3H2O (2) which has an isomorphous structure to 1. Compound 1 crystallizes in space group P21/n with Z=4 in a unit cell of a=14.826 (4) Å, b=4.536 (8) Å, c=14.000 (4) Å, =100.32 (2)0 and V=2968 (11) Å3. The structure was refined to R=0.75 and Rw=0.82. The coordination geometries of the three iron atoms are observed equivalent in 1 indicating a static disorder of the position among cobalt and iron atoms. Two distinct FeIII doublets observed in Mössbauer spectra of 1 become an indistinguishable broad doublet by dehydration of crystal water. On the other hand, no significant line-broadening is observed after the dehydration in complex 2. The results indicate that the dehydration in 2 induces a local environmental change reordering of an electronic configuration around iron atoms, whereas the remaining disordering is reflected in Mössbauer spectrum after the dehydration in 1.  相似文献   

5.
Time resolved Mössbauer spectra were measured for57Co-labelled Co/IO3/2 using a delayed coincidence technique. A life-time for unstable57Fe(II)-species formed through EC-decay was estimated to be 43±5 ns at room temperature and the initial distribution of57Fe(II)/57Fe(III) at 14.4 keV nuclear level to be 0.47±0.13. The results are discussed in terms of electron transfer from the decayed57Fe(II) atoms to iodate ions.  相似文献   

6.
57Fe Mössbauer emission spectra of the 57Co labeled complex compound [57Co(2-CH3-phen)3] (ClO4)2·2H2O have been measured as a function of temperature between 293 and 4.6 K. The spectra exclusively show high-spin iron(II) resonances beside a small fraction of an high-spin iron(II) species, whereas the corresponding iron(II) compound is known to exhibit thermally induced high-spin 5T2g(Oh) ? low spin 1A1g(Oh) transition. The electronic nature of the anomalous spin state has been found to be 5A1(D3) by a theoretical treatment of the temperature dependence of the quadrupole splitting. The results are in good agreement with those obtained from Mössbauer absorption measurements on [57Fe0.01Co0.99(2-CH3-(phen)3] (ClO4)2·2H2O.  相似文献   

7.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

8.
Pyridine Adducts of the Gold Halides. 1. Synthesis and Structure of [Hpy][AuCl4], AuC13 · py, [AuCl2(py)2]Cl · H2O, and [AuCl2(py)2] [AuCl2] HAuCl4 reacts with pyridine in aqueous solution to form sparingly soluble [Hpy] [AuCl4]. This goes into solution as [AuCl2(py)2]+ on adding an excess of pyridine. [Hpy][AuCl4] decomposes above 195°C to HCl and AuCl3 · py, which can also be obtained from NaAuCl4 and pyridine. AuCl2 · py is formed by the reaction of AuCl2 · S(CH2C6H4)2 with pyridine in CHCl3. According to the vibrational spectrum the complex is built up of trans[AuCl2(py)2]+ cations and [AuCl2]? anions. The IR spectra of [Hpy][AuCl4], AuCl3 · py, and [AuCl2(py)2]Cl · H2O are discussed and assigned with respect to the crystal structures. [Hpy][AuCl4] crystallizes monoclinic in the space group C2/m. In its structure alternating layers of [Hpy]+ cations and [AuCl4]? anions are observed. The monoclinic AuCl3 · py (space group C2/c) consists of molecular complexes, wherein the gold atom is surrounded by three Cl atoms and one pyridine molecule in a square planar arrangement. The coordination is completed to an elongated octahedron by two more distant Cl atoms of neighbouring complexes. [AuCl2(py)2]Cl · H2O crystallizes in the monoclinic space group P21/n. It forms planar trans[AuCl2(py)2]+ cations, weakly coordinated with an additional Cl? ion and one H2O molecule. The Au? Cl bond lengths in the complexes under investigation are in the range of 227 to 229 pm, the Au? N distances are between 197 and 199 pm.  相似文献   

9.
The hydrothermal synthesis, using tris-(2-ethylamino)amine (tren) as a template, and the crystal structures of three new hybrid iron fluorides, (H3O)2·[H3tren]2·(FeF6)2·(FeF5(H2O))·2H2O (I), [H3tren]2·(FeF6)2·(FeF2(H2O)4)·8H2O (II) and [H3tren]2·(FeF6)·(F)3·H2O (III), are reported. I, II, and III are triclinic (P-1), monoclinic (P21/c) and orthorhombic (I222), respectively. The structure of I is built up from isolated FeF6 and FeF5(H2O) distorted octahedra separated by triprotonated [H3tren]3+ cations, disordered H3O+ cations and H2O molecules. In II, FeIIIF6 and neutral [FeIIF2(H2O)4] octahedra form, together with [H3tren]3+ cations, infinite (100) layers separated by extra water molecules. The structure of III consists of isolated and disordered FeF6 octahedra, fluoride anions F connected to [H3tren]3+ cations and extra fluoride anions F disordered with H2O molecules. All [H3tren]3+ cations have a “spider” type conformation. 57Fe Mössbauer characterization shows that +III valence state can only be considered for iron cations in I and III and preliminary Mössbauer results are consistent with the presence of both +II and +III valences for iron cations in II, in agreement with the crystallographic results.  相似文献   

10.
The chemical states of 57Fe atoms in 57Co-labelled cobalt(II) oxinate and in iron(II) oxinate have been studied by means of Mössbauer spectroscopy. Consquently the trivalent charge state of iron atom was found in 57Co-labelled hydrated cobalt(II) oxinate, and remarkable difference in Mössbauer parameters of ferrous ion in 51Co-labelled cobalt(II) oxinate and iron(II) oxinate complexes are observed.  相似文献   

11.
In-beam Mössbauer spectra of 57Fe, decayed from short-lived 57Mn (T1/2 = 1.45 min) implanted into potassium permanganate, KMnO4, were measured at temperatures between 11 K and 130 K. This is the first application of a secondary RI beam to the study of valence states after nuclear transformation. The in-beam Mössbauer spectra obtained below 90 K could be analyzed with two components, a doublet and a singlet. From the calculations of the molecular orbital wave functions, the singlet is suggested to be substitutional 57Fe atoms for Mn-sites in tetrahedral [MnO4] with an unusually high valence state of Fe8+.  相似文献   

12.
A high‐yield, mmolar‐scale synthesis of pure guanidinium nitroprusside, (CN3H6)2[(57)Fe(CN)5NO] (GNP) from iron metal is described. The iron metal contained pieces of 95.3% 57Fe together with normal iron so that an isotope enrichment in 57Fe of 25% was achieved. Single‐crystals of GNP could be grown in cubic shape and dimensions of about 3 × 4 × 4 mm3. The purity of the GNP product and the intermediates K4[(57)Fe(CN)6] · 3 H2O and Na2[(57)Fe(CN)5NO] · 2 H2O was ascertained by 57Fe Mössbauer spectroscopy as well as 13C, 14N and 57Fe NMR spectroscopy. The 57Fe NMR chemical shift for [(57)Fe(CN)5NO]2– in GNP was detected at +2004.0 ppm [vs Fe(CO)5].  相似文献   

13.
Iron acetate of composition [Fe3O(CH3COO)6(H2O)3][AuCl4]·6H2O (I) was synthesized and investigated by X-ray diffraction analysis and Mössbauer spectroscopy. The [Fe3O(CH3COO)6(H2O)3]+ complex cation has a structure typical for 3-O bridged trinuclear ferric compounds with iron atoms lying at the vertices of a regular triangle with an oxygen atom at the center. The iron atoms are each coordinated by 4 oxygen atoms of the four bridging carboxylic groups, the 3-O bridging atom, and the coordinated water molecule in the trans-position to the latter. In the trinuclear cation, the Fe(III) ions are coupled by antiferromagnetic exchange interactions with the exchange parameter J = -29.0 cm –1 (HDVV model for D 3h symmetry). The specific role of the solvate water molecules in structure formation is discussed.  相似文献   

14.
Synthesis and Characterization of 2‐O‐Functionalized Ethylrhodoximes and ‐cobaloximes 2‐Hydroxyethylrhodoxime and ‐cobaloxime complexes L—[M]—CH2CH2OH (M = Rh, L = PPh3, 1 ; M = Co, L = py, 2 ; abbr.: L—[M] = [M(dmgH)2L] (dmgH2 = dimethylglyoxime, L = axial base) were obtained by reaction of L—[M] (prepared by reduction of L—[M]—Cl with NaBH4 in methanolic KOH) with BrCH2CH2OH. H2O—[Rh], prepared by reduction of H[RhCl2(dmgH)2] with NaBH4 in methanolic KOH, reacted with BrCH2CH2OH followed by addition of pyridine yielding py—[Rh]—CH2CH2OH ( 3 ). Complexes 1 and 3 were found to react with (Me3Si)2NH forming 2‐(trimethylsilyloxy)ethylrhodoximes L—[Rh]—CH2CH2OSiMe3 (L = PPh3, 4 ; L = py, 5 ). Treatment of complex 1 with acetic anhydride resulted in formation of the 2‐(acet oxy)ethyl complex Ph3P—[Rh]—CH2CH2OAc ( 6 ). All complexes 1 — 6 were isolated in good yields (55—71 %). Their identities were confirmed by NMR spectroscopic investigations ( 1 — 6 : 1H, 13C; 1 , 4 , 6 : 31P) and for [Rh(CH2CH2OH)(dmgH)2(PPh3)]·CHCl3·1/2H2O ( 1 ·CHCl3·1/2H2O) and py—[Rh]—CH2CH2OSiMe3 ( 5 ) by X‐ray diffraction analyses, too. In both molecules the rhodium atoms are distorted octahedrally coordinated with triphenylphosphine and the organo ligands (CH2CH2OH and CH2CH2OSiMe3, respectively) in mutual trans position. Solutions of 1 in dmf decomposed within several weeks yielding a hydroxyrhodoxime complex “Ph3P—[Rh]—OH”. X‐ray diffraction analysis exhibited that crystals of this complex have the composition [{Rh(dmg)(dmgH) (H2O)(PPh3)}2]·4dmf ( 7 ) consisting of centrosymmetrical dimers. The rhodium atom is distorted octahedrally coordinated. Axial ligands are PPh3 and H2O. One of the two dimethylglyoximato ligands is doubly deprotonated. Thus, only one intramolecular O—H···O hydrogen bridge (O···O 2.447(9)Å) is formed in the equatorial plane. The other two oxygen atoms of dmgH and dmg2—, respectively, act as hydrogen acceptors each forming a strong (intermolecular) O···H′—O′ hydrogen bridge to the H′2O′ ligand of the other molecule (O···O′ 2.58(2)/2.57(2)Å).  相似文献   

15.
The trinuclear chromium(III) complex [Cr3O(CH3CO2)6(L)(H2O)2] (where L is the monoanion of the flavonoid naringenin) was synthesized and characterized. Density functional theory (DFT) calculations and quantum theory of atoms in molecules (QTAIM) analysis show that the flavonoid binds to CrIII as an O,O-bidentate ligand via the 5-hydroxy and 4-oxo groups. Reactions with 2,2-diphenyl-1-picrylhydrazyl (DPPH) indicate that the antiradical activity of this flavonoid-metal complex is enhanced in comparison with uncoordinated naringenin.  相似文献   

16.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

17.
Oxo-centered trinuclear mixed-valence iron fumarate [Fe3O(O2CCH=CHCO2)3(H2O)3]·nH2O and iron malonate [Fe3O(O2CCH2CO2)3(H2O)3] have been prepared and studied by variable temperature Mössbauer spectroscopy. Iron fumarate complex showed a temperature dependent valence delocalization process. At 6 K two quadrupole split doublets corresponding to high-spin Fe(III) and high-spin Fe(II) state with an area ratio of 2:1 were observed and at 298 K there was only an averaged singlet peak. On the other hand malonate complex showed a localized valence state of high-spin Fe(III) and Fe(II) from low temperature to room temperature only with a slight variation in area ratio and spectral line broadening for Fe(II).  相似文献   

18.
Two new complexes, [Co2(CH2=C(CH3)CO2)4(phen)2(H2O)2] (1) and [Pb2(CH2=C(CH3)CO2)4(phen)2] (phen = 1,10-phenanthroline) (2), have been synthesized and structurally characterized by single crystal X-ray diffraction methods. There are two cocrystallized conformers of [Co(CH2=C(CH3)CO2)2(phen)(H2O)] in the asymmetric unit of 1 with the Co atoms displaying similar coordination modes. In the asymmetric unit of 2, there exist two crystallographically independent [Pb(CH2=C(CH3)CO2)2(phen)] molecules with the Pb atoms showing completely different coordination geometries. Weak intermolecular interactions such as hydrogen bonding and π–π stacking are responsible for the supramolecular assembly and stabilization of the crystal structures of 1 and 2. The complexes are characterized by elemental analysis, IR spectra, and UV–Vis spectra. The fluorescent properties of 2 are also discussed.  相似文献   

19.
The structure of two trinuclear iron acetates [Fe3O(CH3COO)6(H2O)3]Cl· 6H2O (I) and [Fe3O(CH3COO)6(H2O)3][FeCl4] · 2CH3COOH (II) was determined by X-ray diffraction analysis. Crystals I and II are ionic and belong to the orthorhombic system with parameters a = 13.704(3), b = 23.332(5), c = 9.167(2) Å, R = 0.0355, space goup P21212 for I and a = 10.145(4), b = 15.323(6), c = 22.999(8) Å, R = 0.0752, space group Pbc21 for II. The complex cation [Fe3O(CH3COO)6(H2O)3]+ has a μ3-O-bridged structure typical for trinuclear iron (III) compounds. As shown by Mössbauer spectroscopy, the iron(III) ions are in the high-spin state. In trinuclear cations, antiferromagnetic exchange interaction takes place between the Fe(III) ions with the exchange parameter J = -26.69 cm?1 for II (Heisenberg-Dirac-Van Vleck model for D3h, symmetry).  相似文献   

20.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号