首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Five heteroleptic compounds, [VVO(IN-2H)(L-H)], where L are 8-hydroxyquinoline derivatives and IN is a Schiff base ligand, were synthesized and characterized in both the solid and solution state. The compounds were evaluated on epimastigotes and trypomastigotes of Trypanosoma cruzi as well as on VERO cells, as a mammalian cell model. Compounds showed activity against trypomastigotes with IC50 values of 0.29–3.02 μM. IN ligand and the new [VVO2(IN-H)] complex showed negligible activity. The most active compound [VVO(IN-2H)(L2-H)], with L2 = 5-chloro-7-iodo-8-hydroxyquinoline, showed good selectivity towards the parasite and was selected to carry out further biological studies. Stability studies suggested a partial decomposition in solution. [VVO(IN-2H)(L2-H)] affects the infection potential of cell-derived trypomastigotes. Low total vanadium uptake by parasites and preferential accumulation in the soluble proteins fraction were determined. A trypanocide effect was observed when incubating epimastigotes with 10 × IC50 values of [VVO(IN-2H)(L2-H)] and the generation of ROS after treatments was suggested. Fluorescence competition measurements with DNA:ethidium bromide adduct showed a moderate DNA interaction of the complexes. In vivo toxicity study on C. elegans model showed no toxicity up to a 100 μM concentration of [VVO(IN-2H)(L2-H)]. This compound could be considered a prospective anti-T. cruzi agent that deserves further research.  相似文献   

2.
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.  相似文献   

3.
Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure–activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.  相似文献   

4.
Trypanosoma cruzi Trypanothione Reductase (TcTR) is one of the therapeutic targets studied in the development of new drugs against Chagas' disease. Due to its biodiversity, Brazil has several compounds of natural origin that were not yet properly explored in drug discovery. Therefore, we employed the Virtual Screening against TcTR aiming to discover new inhibitors from the Natural Products Database of the Bahia Semi-Arid region (NatProDB). This database has a wide chemical diversity favoring the discovery of new chemical entities. Subsequently, we analyzed the best docking conformations using self-organizing maps (AuPosSOM) aiming to verify their interaction sites at TcTR. Finally, the Pred-hERG, the Aggregator Advisor, the FAF-DRUGS and the pkCSM results allowed us to evaluate, respectively, the cardiotoxicity, aggregation capacity, presence of false positives (PAINS) and its toxicity. Thus, we selected three molecules that could be tested in in vitro assays in the hope that the computational results reported here would favor the development of new anti-chagasic drugs.  相似文献   

5.
New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4–72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.  相似文献   

6.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

7.
Haematobia irritans is an obligate bloodsucking ectoparasite of cattle and is the global major pest of livestock production. Currently, H. irritans management is largely dependent upon broad-spectrum pesticides, which lately has led to the development of insecticide resistance. Thus, alternative control methods are necessary. Endophyte-infected grasses have been studied as an alternative due to their capability to biosynthesize alkaloids associated with anti-insect activities. Thus, the main aim of this study was to evaluate the antifeedant and repellent activity of lolines obtained from endophyte-infected tall fescue against H. irritans adults in laboratory conditions. The alkaloid extract (ALKE) was obtained by acid–base extraction. N-formyl loline (NFL) and N-acetyl loline (NAL) were isolated by preparative thin layer chromatography (pTLC) and column chromatography (CC), and the loline was prepared by acid hydrolysis of a NFL/NAL mixture. Loline identification was performed by gas chromatography coupled to mass spectrometry (GC/MS). Feeding behavior was evaluated by a non-choice test, and olfactory response was evaluated using a Y-tube olfactometer. Accordingly, all samples showed antifeedant activities. NFL was the most antifeedant compound at 0.5 µg/µL and 1.0 µg/µL, and it was statistically equal to NAL but different to loline; however, NAL was not statistically different to loline. NFL and NAL at 0.25 µg/µL were more active than loline. All samples except loline exhibited spatial repellency in the olfactometer. Thus, the little or non-adverse effects for cattle and beneficial activities of those lolines make them suitable candidates for horn fly management.  相似文献   

8.
Lanthanum ferricyanide is so far the only 3–3 electrolyte whose activity coefficients have been studied carefully; however, the results have been acknowledged to be inconsistent below 1×10–4 mol-kg–1. New measurements have been made with an improved cell, proving that the wrong trend was due to chemical interference in the original cell. The new cell makes it possible to reach dilution levels of the order of 4×10–6 mol-kg–1. The salt behaves radically unlike Debye-Hückel's predictions, but agrees with other more refined treatments of the hard sphere models without needing any further hypotheses, such as e.g., association. The revised values of the activity coefficients are reported.  相似文献   

9.
The activity coefficients of LaCl3, K3Fe(CN)6, and LaFe(CN)6 were measured down to about 1×10–4, 3×10–5, and 2×10–5 mol-kg–1 respectively, by means of cells with ion-exchange liquid membranes. In the diluted region, the trend of lanthanum chloride agrees with the Debye-Huckel theory and corroborates earlier findings in the literature relevant to more concentrated solutions, with minor systematic corrections of the ± values. K3Fe(CN)6 attains (rather than tends to attain) the Debye-Huckel limiting slope at1×10–3 mol-kg–1, and lanthanum ferricyanide in the diluted region shows negative deviations from the limiting law, similar to the ones predicted for large-sized, highly-charged ions in the diluted region by Bjerrum's, IPBE, and Mayer's theories. The behavior of LaCl3 in the concentrated solutions proves that lanthanum ion drags along with it into the membrane many molecules of water which were then found to be twelve. Pitzer's theory best-fit coefficients that meet the experimental curves to be reproduced satisfactorily are reported.  相似文献   

10.
Haematobia irritans is a cosmopolitan obligate blood-feeding ectoparasite of cattle and is the major global pest of livestock production. Currently, H. irritans management is largely dependent on broad-spectrum pesticides, which has led to the development of insecticide resistance. Thus, alternative control methods are needed. Essential oils have been studied as an alternative due to their wide spectrum of biological activities against insects. Thus, the main aim of this study was to evaluate the insecticidal, repellent and antifeedant activity of the essential oils from Blepharocalyx cruckshanksii leaves and Pilgerodendron uviferum heartwood against horn flies in laboratory conditions. The composition of the essential oils was analyzed using gas chromatography coupled to mass spectrometry. Accordingly, α-pinene (36.50%) and limonene (20.50%) were the principal components of the B. cruckchanksii essential oil, and δ-cadinol (24.16%), cubenol (22.64%), 15-copaenol (15.46%) and δ-cadinene (10.81%) were the most abundant compounds in the P. uviferum essential oil. Mortality of flies and feeding behavior were evaluated by non-choice tests, and olfactory response was evaluated using a Y-tube olfactometer. Both essential oils were toxic to horn flies, with LC50 values for B. cruckchanksii essential oil of 3.58 µL L−1 air at 4 h, and for P. uviferum essential oil of 9.41 µL L−1 air and 1.02 µL L−1 air at 1 and 4 h, respectively. Moreover, the essential oils exhibited spatial repellency in the olfactometer using only 10 µg of each oil, and these significantly reduced the horn fly feeding at all doses evaluated. Although further laboratory and field studies related to the insectistatic and insecticide properties of these essential oils against H. irritans are necessary, B. cruckshanksii leaves and P. uviferum heartwood essential oils are promising candidates for horn fly management.  相似文献   

11.
The activity coefficients of CdSO4 CoSO4, and NiSO4 are determined from the emf of liquid-membrane cells, like those described in the papers I–VI of this series. The activity coefficients of the auxiliary salts Co(ClO4)2, Ni(ClO4)2, and K2SO4, needed to eliminate the problem of extrapolation to infinite dilution of the 2–2 salts, are also measured. CdSO4 CoSO4 and NiSO4 in the dilute region deviate downward from the limiting law by a larger extent than believed in the past, thus creating the need for the activity coefficients to be recalculated and systematically lowered by 8–16%. The activity coefficients of Co(ClO4)2 and Ni(ClO4)2, too, need to be corrected by around –3%. For K2SO4, the original values, although scattered, were substantially correct. Pitzer's theory best-fit parameter, able to provide the activity and osmotic coefficients of the salts considered, are reported.  相似文献   

12.
Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and SEA servers) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.  相似文献   

13.
A one‐pot template condensation of 2‐(2‐(dicyanomethylene)hydrazinyl)benzenesulfonic acid (H2L1, 1 ) or 2‐(2‐(dicyanomethylene)hydrazinyl)benzoic acid (H2L2, 2 ) with methanol (a), ethylenediamine (b), ethanol (c) or water (d) on copper(II), led to a variety of metal complexes, that is, mononuclear [Cu(H2O)2O1N2 L1a] ( 3 ) and [Cu(H2O)(κO1N3 L1b)] ( 4 ), tetranuclear [Cu4(1 κO1N2:2 κO1 L2a)3‐(1 κO1, κN2:2 κO2 L2a)] ( 5 ), [Cu2(H2O)(1 κO1, κN2:2 κO1 L2c)‐(1 κO1,1 κN2:2 κO1,2 κN1‐ L2c)]2 ( 6 ) and [Cu2(H2O)2O1N2‐ L1dd)‐(1 κO1N2:2 κO1 L1dd)(μ‐H2O)]2 ? 2 H2O ( 7? 2 H2O), as well as polymer‐ ic [Cu(H2O)(κO1,1 κN2:2 κN1 L1c)]n ( 8 ) and [Cu(NH2C2H5)(κO1,1 κN2:2 κN1L2a)]n ( 9 ). The ligands 2‐SO3H‐C6H4‐(NH)N?C{(CN)[C(NH2)‐(?NCH2CH2NH2)]} (H2L1b, 10 ), 2‐CO2H‐C6H4‐(NH)N?{C(CN)[C(OCH3)‐(?NH)]} (H2L2a, 11 ) and 2‐SO3H‐C6H4‐(NH)N?C{C(?O)‐(NH2)}2 (H2L1dd, 12 ) were easily liberated upon respective treatment of 4 , 5 and 7 with HCl, whereas the formation of cyclic zwitterionic amidine 2‐(SO3?)? C6H4? N?NC(? C?(NH+)CH2CH2NH)(?CNHCH2CH2NH) ( 13 ) was observed when 1 was treated with ethylenediamine. The hydrogen bond‐induced E/Z isomerization of the (HL1d)? ligand occurs upon conversion of [{Na(H2O)2(μ‐H2O)2}(HL1d)]n ( 14 ) to [Cu(H2O)6][HL1d]2 ? 2 H2O ( 15 ) and [{CuNa(H2O)‐(κN1,1 κO2:2 κO1 L1d)2}K0.5(μ‐O)2]n ? H2O ( 16 ). The synthesized complexes 3 – 9 are catalyst precursors for both the selective oxidation of primary and secondary alcohols (to the corresponding carbonyl compounds) and the following diastereoselective nitroaldol (Henry) reaction, with typical yields of 80–99 %.  相似文献   

14.
There is currently a global COVID-19 pandemic caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and its variants. This highly contagious viral disease continues to pose a major health threat global. The discovery of vaccinations is not enough to prevent their spread and dire consequences. To take advantage of the current drugs and isolated compounds, and immediately qualifying approach is required. The aim of our research is evaluation the potency for natural antiviral compounds against the SARS CoV-2 Mpro. Molecular docking of four phenolic compounds from Phillyrea angustifolia leaves with SARS-CoV-2 Mpro has been conducted. Similarly, the stability of selected ligand–protein interactions has been determined using MD simulations. Moreover, the quantitative structure–activity relationship (QSAR), MMGBSA binding energies, pharmacokinetics, and drug-likeness predictions for selected phenolic have been reported. The selected phenolic compounds (Luteolin-7-O-glucoside, Apigenin-7-O-glucoside, Demethyl-oleuropein, and Oleuropein aglycone) revealed strong binding contacts in the two active pockets of a target protein of SARS-CoV-2 Mpro with the docking scores and highest binding energies with a binding energy of ?8.2 kcal/mol; ?7.8 kcal/mol; ?7.2 kcal/mol and ?7.0 kcal/mol respectively. Both Demethyloleoeuropein and Oleuropein aglycone can interact with residues His41 and Cys145 (catalytic dyad) and other amino acids of the binding pocket of Mpro. According to QSAR, studies on pharmacokinetics and drug-like properties suggested that oleuropein aglycone could be the best inhibitor of SARS-CoV-2 for new drug design and development. Further in vivo, in vitro, and clinical studies are highly needed to examine the potential of these phenolic compounds in the fight against COVID-19.  相似文献   

15.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号