首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
纳米CaCO3的改性、表面结构与流变行为研究   总被引:4,自引:0,他引:4  
唐艳军  李友明  胡大为 《化学学报》2007,65(20):2291-2298
采用铝锆偶联剂和棕榈酸改性纳米CaCO3 粉体. 借助 XRD, FTIR, 接触角及流变学等测试方法对纳米CaCO3 的表面结构进行表征. XRD 分析表明: 改性纳米 CaCO3保持原样品完整的体相结构, 为方解石型纳米微晶. FTIR 分析证明: 表面改性剂与纳米 CaCO3 表面是以化学键合和物理吸附方式相结合, 粒子表面存在羧基等有机官能团的红外吸收特征. 通过测定苯和水在改性纳米CaCO3粉末压片上的接触角, 计算了改性纳米 CaCO3的表面能和极性分量, 并与未改性纳米CaCO3 进行比较. 结果表明, 经表面改性, 纳米 CaCO3 的表面能和极性分量明显降低, 其在有机溶液中的吸附功增大, 界面张力大大降低; 经棕榈酸改性的纳米 CaCO3 表现出较好的亲油疏水性, 而铝锆偶联剂改性的纳米 CaCO3 同时具有亲水性和亲油性. 以液体石蜡为溶剂, 研究了表面改性对纳米CaCO3悬浮液流变行为的影响. 实验发现: 经过表面处理, 纳米 CaCO3 粉体悬浮液流变行为发生较大的变化, 稳态剪切黏度大大降低, 表现出较小的动态弹性储能模量和黏性损耗模量, 而损耗因子较大.  相似文献   

2.
纳米CaCO3微晶的晶格畸变和反常红外特性   总被引:14,自引:0,他引:14  
利用TEM、SEM、X射线衍射(XRD)和Voigt函数单峰分析法讨论了纳米CaCO3微晶结构,解释了纳米CaCO3微晶的反常红外吸收特性,并认为微结构中的尺寸效应使得纳米CaCO3晶格中存在较大的畸变应力,从而引起了碳酸钙微晶的红外ν3吸收峰有约40 cm-1的蓝移和明显窄化。  相似文献   

3.
以聚乙二醇磷酸酯1000为表面处理剂, 采用碳化法合成了方解石型碳酸钙纳米粒子, 进一步制备了聚对苯二甲酸乙二醇酯/碳酸钙纳米复合材料. 采用透射电子显微镜(TEM)、 X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR), 场发射扫描电子显微镜(FESEM)和热重分析(TGA)对样品进行了分析. 结果表明, 聚乙二醇磷酸酯1000成功地修饰到碳酸钙的表面, 并得到平均直径为60 nm, 形貌为立方体的纳米碳酸钙晶体. 与碳酸钙(空白)样品相比, 表面处理碳酸钙的复合材料表现出更好的分散性和热稳定性. 采用Friedman方法计算了复合材料热分解的活化能. 聚对苯二甲酸乙二醇酯、 聚对苯二甲酸乙二醇酯/空白碳酸钙和聚对苯二甲酸乙二醇酯/表面处理碳酸钙的活化能分别为200.58, 214.86和219.50 kJ/mol, 进一步说明了表面处理碳酸钙更好地改善了聚对苯二甲酸乙二醇酯的热稳定性.  相似文献   

4.
碳酸钙的原位合成及表面改性   总被引:3,自引:0,他引:3  
利用碳化法, 选用几种常见的改性剂(硬脂酸钠、十八碳醇磷酸酯和油酸)对碳酸钙进行了原位合成及表面改性. 通过活化度、白度、接触角的测定, 对比了其改性效果, 同时通过傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、透射电镜(TEM)等测试手段对产品进行表征. FT-IR结果表明, 改性剂与碳酸钙表面是以化学键合和物理吸附方式相结合. 碳酸钙改性后, 其红外υ3特征吸收峰出现约44 cm-1的蓝移现象. 对反应机理进行了初步探讨. 实验结果表明, 当十八碳醇磷酸酯用量达到2%(以碳酸钙的质量分数计)时, 产品活化度达到99.9%, 白度值达到97.3%, 接触角达到了122.25°, 从而为新型无机填料的制备提供了理论依据和合成手段.  相似文献   

5.
表面修饰二氧化锡纳米微晶的制备与表征   总被引:10,自引:0,他引:10  
制备了硅烷偶联剂KH-570表面修饰的SnO2纳米微晶,通过FT-IR、XPS、TEM和TG-DTA对其结构和表面特性进行表征和研究. FT-IR和XPS分析结果确证了KH-570与SnO2表面是以化学键合或物理吸附方式相结合,粒子表面存在酯基等有机官能团的红外吸收特征;观测到KH-570中Si原子的Si2s和Si2p谱线. TEM分析表明,表面修饰反应增强了SnO2纳米微晶的疏水性和分散性.由XPS和TG的实测数据探讨了纳米粒子具有较低包覆量的可能原因.  相似文献   

6.
本文以氯化钙和氨水的混合溶液为水相,聚氧乙烯辛基苯酚醚-10(OP-10)为表面活性剂,正辛醇为助表面活性剂,环己烷为油相配制了反相微乳液。并通过向其中通入CO 2气体制备微/纳米碳酸钙,得到了铁饼状的微米碳酸钙。采用扫描电子显微镜(SEM),X射线粉末衍射(XRD)和傅里叶变换红外光谱(FTIR)表征了微米碳酸钙的形貌和晶型结构。初步探讨了铁饼状微米碳酸钙的形成机理。  相似文献   

7.
以L-组氨酸为模板仿生合成针状纳米碳酸钙   总被引:3,自引:0,他引:3  
依据仿生合成原理, 以L-组氨酸为有机基质, 无水氯化钙和无水碳酸钠为原料, 通过简单的复分解反应制备出了平均直径约为80 nm, 长径比约为12∶1的针状纳米碳酸钙晶体. 利用高分辨扫描电子显微镜(FESEM)、X射线衍射仪(XRD)、傅里叶红外光谱议(FTIR)对产物进行了表征, 结果表明, 在不添加有机基质的溶液中得到立方状微米级的碳酸钙晶体, 添加L-组氨酸后得到针状纳米级的碳酸钙晶体, 并对L-组氨酸在仿生合成针状纳米碳酸钙过程中的作用机理进行了初步探讨.  相似文献   

8.
在微量聚乙烯吡咯烷酮(PVP)存在下, 利用超声还原氯化钯水溶液, 制备出超细纳米Pd颗粒, 用高分辨透射电镜、红外光谱、紫外-可见光谱和X射线光电子能谱等技术对其表面形貌及结构进行了表征. 结果表明, 纳米Pd粒子的粒径均一, 大约为3 nm. 纳米Pd/PVP复合粉末的羰基红外吸收峰比PVP的羰基吸收峰红移9 cm-1; 且当超声反应50 min时, PVP紫外吸收波峰蓝移16 nm, 表明了纳米Pd与PVP之间存在一定的相互作用力. XPS结果证明, 纳米Pd与PVP的羰基基团通过配位作用使超细纳米Pd粒子得以稳定分散存在.  相似文献   

9.
在反应物经超声波预处理和聚丙烯酸钠PAANa分散剂的掺杂下运用化学沉淀方法制备出窄粒径纳米碳酸钙。将所获纳米粒子运用现代分析测试手段进行结构、晶形、组成等的表征。结果表明纳米级超细碳酸钙在红外区有蓝移40cm-1和峰形窄化现象纳米粒子的高表面能及CO32-存在的共轭体系CaO键的相互作用以及表面配位的不饱和性和晶体生长的人为终止是存在表面效应的主要原因。  相似文献   

10.
通过以Ag纳米颗粒为模板的置换和沉积反应,制备了Ag/Pt双金属复合纳米颗粒.用透射电子显微镜(TEM)对颗粒的形貌、尺寸和结构进行了表征,发现复合颗粒具有中空结构.紫外可见吸收光谱(UV-Vis)研究表明,Ag/Pt双金属中空复合纳米颗粒具有单峰的表面等离子共振吸收特征,随着反应溶液中氯铂酸和硝酸银摩尔比的增加,吸收峰先红移后蓝移.表面增强拉曼光谱实验结果表明,Ag/Pt双金属复合纳米颗粒对吡啶分子具有较好的增强效果.  相似文献   

11.
纸张涂料用纳米CaCO3表面改性的研究   总被引:4,自引:0,他引:4  
利用铝锆偶联剂对纳米CaCO3进行表面改性。采用红外光谱(IR)、X射线衍射分析(XRD)、热分析(TG-DTG)对改性前后的纳米CaCO3进行了表征。通过透射电镜(TEM)、粒度分析、吸油值、比表面积及静滴接触角等实验对纳米CaCO3的表面改性效果进行评价。红外光谱分析表明,偶联剂以化学键合的方式在纳米CaCO3的表面形成化学吸附。TEM及粒度分析结果显示,未改性纳米CaCO3存在严重的团聚现象,而改性后纳米CaCO3的分散性有很大改善。经表面改性,水滴在纳米CaCO3粉体压片表面静滴接触角变大,改性纳米CaCO3同时具有亲水性和亲油性,能够较好地分散在水和有机相中。将改性前后的纳米CaCO3分别加入到纸张涂料体系中,制得纳米CaCO3复合纸张涂料。涂料流变实验表明,经铝锆偶联剂表面改性的纳米CaCO3制得的复合纸张涂料具有较高的动态弹性模量和粘性模量。  相似文献   

12.
分散聚合法制备微米级核壳复合粒子   总被引:1,自引:0,他引:1  
在硬脂酸改性纳米CaCO3存在下进行了苯乙烯(St)和丙烯酸正丁酯(nBA)的分散共聚合,制备了平均粒径为1.76 μm、单分散性较好的CaCO3/P(St-co-nBA) 核壳复合粒子。包覆层聚合物P(St-co-nBA)与CaCO3粒子之间存在物理吸附和化学键合作用,使其热分解温度比共聚物P(St-co-nBA)高。 经热二甲苯抽提后复合物中仍有共聚物存在,这部分共聚物与CaCO3通过化学键牢固的结合。 热失重结果表明,CaCO3的稳定包覆率为6.6%。  相似文献   

13.
合成了三氨基胍三硝基间苯二酚盐(TAGH)2(TNR) (TAG: 三氨基胍; TNR: 2,4,6-三硝基间苯二酚), 并对其进行了元素分析及红外光谱表征. 利用X射线单晶衍射分析测定了其晶体结构. 该晶体属于单斜晶系, 空间群为C2/c, 晶体学数据为, a=2.2892(6) nm, b=1.2802(3) nm, c=1.3661(4) nm, β=111.174(5)°, V=3.7333(16) nm3, Z=8. 该化合物是由二个C(N2H3)+3与一个(C6HN3O8)2-相结合而成的离子型化合物. 用差示扫描量热法、热重法和微商热重法研究了该化合物的热分解过程, 研究结果表明, 在10 K·min-1的升温速率下, 该化合物只有一个剧烈的放热分解过程, 该过程发生在450.1-477.7 K之间, 且分解产物主要是气体产物.  相似文献   

14.
利用三氨基胍和斯蒂芬酸制备得到了三氨基胍三硝基间苯二酚盐, 培养出了可用于X射线衍射的单晶. 利用元素分析、红外光谱、差示扫描量热法(DSC)、热重-微分热重法(TG-DTG)和X射线单晶衍射等方法对标题化合物的组成和结构进行了表征. 晶体属于三斜晶系, 空间群为P-1, 晶胞参数a=0.75554(15) nm, b=0.90816(18) nm, c=1.0264(2) nm, α=101.61(3)°, β=91.96(3)°, γ=107.74(3)°, V=0.6536(2) nm3; Dc=1.775 g/cm3; Z=2; F(000)=360, μ=0.160 mm-1, R1=0.0479, ωR2=0.0998. 晶体结构分析结果表明, 该化合物分子式为C7N9O7H11, 是由[C(N2H3)3]+和(C6N3O8H2)-结合成的离子化合物, 分子中含有大量的氢键, 结构较为稳定. 热分析结果表明, 在10 K/min的升温速率下, 标题化合物的热分解过程由1个吸热峰和3个放热峰组成, 分解产物大部分为气相产物, 剩余残渣量在1%左右.  相似文献   

15.
合成了三氨基胍三硝基间苯二酚盐(TAGH)2(TNR)(TAG)三氨基胍;TNR:2,4,6-三硝基间苯二酚),并对其进行了元素分析及红外光谱表征.利用X射线单晶衍射分析测定了其晶体结构.该晶体属于单斜晶系,空间群为C2/c,晶体学数据为,a=2.2892(6)nm,b=1.2802(3)nm,c=1.3661(4)nm,β=111.174(5)°,V=3.7333(16)nm3,Z=8.该化合物是由二个C(N2H3)3+与一个(C6HN3O8)2相结合而成的离子型化合物.用差示扫描量热法、热重法和微商热重法研究了该化合物的热分解过程,研究结果表明,在10 K·min-1的升温速率下,该化合物只有一个剧烈的放热分解过程,该过程发生在450.1-477.7K之间,且分解产物主要是气体产物.  相似文献   

16.
以十二碳醇磷酸酯(DDP)为改性剂, 采用碳化法制备了分散性良好的球状碳酸钙粒子. 通过FESEM, XRD, FTIR及活化度和接触角测试对产物进行了表征. XRD分析结果表明, 随着DDP添加量的增加, 所得CaCO3由方解石型向文石型转变. FTIR结果表明, 改性剂与碳酸钙表面是以化学键合和物理吸附方式相结合. 当DDP含量达到2%时, 接触角为120.43°, 活化度达到99%, 碳酸钙粒子由亲水性转变为完全疏水性. 考察了反应温度和DDP含量对产物形貌与结晶行为的影响, 并对改性机理进行了初步探讨. 将产品填充到聚丙烯(PP)中, 测定了PP的力学性能.  相似文献   

17.
Novel protein-based nanocomposites were well prepared by in vivo synthesis and co-precipitation of soy protein isolate (SPI) with calcium carbonate (CaCO3) in an aqueous solution. The resultant CaCO3 in the nanocomposites was identified as calcite- and aragonite-type, respectively. The morphology and structure of the CaCO3/SPI composites were investigated by means of wide-angle X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, and high-resolution transmission electron microscopy. The results revealed that the polymorph and the size of CaCO3 in the nanocomposites were dependent on its content, pH, and the conformation of soy protein. At the content of more than 5%, CaCO3 was changed into calcite crystal with the preference of growing along (104) plane. However, at lower content of less than 5%, CaCO3 preferred to form aragonite in the composite as a result of the modulation by soy protein. The aragonite nanocrystals were arrayed in the direction of (111) plane and self-assembled along beta-sheet planes of soy protein polypeptides. The mechanical properties, thermal stability, and water resistance of the CaCO3/SPI nanocomposites were significantly improved as a result of the nanosized effects. Interestingly, the aragonite/SPI nanocomposite exhibited higher tensile strength (about 50 MPa) than that of calcite/SPI, owing to a good compatibility and strong interaction between aragonite and soy protein polypeptides. This work provided a simple pathway to develop the soy protein-based bio-hybrid materials with high mechanical strength and valuable information on their structure-properties relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号