首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A drug diffusion model for the case of diffusion of an initially uniformly distributed drug through a polymeric matrix is presented and solved. Drug diffusion from a single surface is analyzed for the case of countercurrent diffusion of a solvent which is thermodynamically compatible with the polymer. Due to swelling, considerable volume expansion is observed leading to a moving-boundary diffusion problem. Drug concentration profiles within the polymer and drug release rates can be determined. The results are in agreement with experimental data obtained for the system of KCl distributed in hydrophilic hydroxypropyl methyl cellulose matrices, in the form of tablets.  相似文献   

2.
Present article discusses the synthesis, characterization, biodegradation, network parameter and drug release of gum acacia-crosslinked-carbopol hydrogel wound dressing. Polymers have been characterized by 13C solid state nuclear magnetic resonance spectroscopy, elemental analysis, cryo-scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, differential thermal analysis, differential thermogravimetry, and differential scanning calorimetry studies. Network parameters of hydrogel wound dressings such as polymer volume fraction in the swollen state φ, Flory–Huggins interaction parameter χ, molecular weight of the polymer chain between two neighboring cross links Mc, crosslink density ρ and the corresponding mesh size ξ have also been determined. Different in vitro release kinetic models (zero order, first order, Higuchi square root law, Korsmeyer-Peppas, and Hixson-Crowell cube root models) have been applied on the drug release profile. The release of antibiotic drug moxifloxacin from the drug loaded hydrogel matrix occurred through non-Fickian diffusion mechanism and release profile best fitted in the Korsmeyer-Peppas model. Semi-contact mode atomic force microscopic imaging showed that rough surface with root mean square roughness 82.868 nm of the polymer films.  相似文献   

3.
A carbon dioxide (CO(2))-based microencapsulation technique was used to impregnate indomethacin, a model drug, into biodegradable polymer nanoparticles. Compressed CO(2) was emulsified into aqueous suspensions of biodegradable particles. The CO(2) plasticizes the biodegradable polymers, increasing the drug diffusion rate in the particles so that drug loading is enhanced. Four types of biodegradable polymers were investigated, including poly(d,l-lactic acid) (PLA), poly(d,l-lactic acid-co-glycolic acid) (PLGA) with two different molar ratios of LA to GA, and a poly(d,l-lactic acid-b-ethylene glycol) (PLA-PEG) block copolymer. Biodegradable nanoparticles were prepared from polymer solutions through nonsolvent-induced precipitation in the presence of surfactants. Indomethacin was incorporated into biodegradable nanoparticles with no change of the particle size and morphology. The effects of a variety of experimental variables on the drug loadings were investigated. It was found that the drug loading was the highest for PLA homopolymer and decreased in PLGA copolymers as the fraction of glycolic acid increased. Indomethacin was predicted to have higher solubility in PLA than in PLGA based on the calculated solubility parameters. The drug loading in PLA increased markedly as the temperature for impregnation was increased from 35 to 45 degrees C. Drug release from the particles is a diffusion-controlled process, and sustained release can be maintained over 10 h. A simple Fickian diffusion model was used to estimate the diffusion coefficients of indomethacin in the biodegradable polymers. The diffusion coefficients are consistent with previous studies, suggesting that the polymer properties are unchanged by supercritical fluid processing. Supercritical CO(2) is nontoxic, easily separated from the polymers, can extract residual organic solvent, and can sterilize biodegradable polymers. The CO(2)-based microencapsulation technique is promising for the production of drug delivery devices without the use of harmful solvents.  相似文献   

4.
Polymer materials are widely used in controlled drug release, and the diffusion property of drug molecules in these materials is of great importance. In this work, the diffusion behavior of a model drug (aspirin) in different ratios of poly(lactic acid-co-ethylene glycol) (PLA-PEG) was investigated by molecular dynamics simulations. Two major factors, which influence the diffusion of aspirin in polymer matrix: the wriggling of the polymer chain and the free volume of the polymer matrix, are discussed. The wriggling of the polymer chain mainly controls the diffusion of aspirin molecules. Free volume becomes the secondary effect. For two different polymers having a similar degree of wriggling, the free volume controls the diffusion of the aspirin molecules. Comparing with the diffusion behavior of small gas molecules in polymer matrix, a different mechanism was proposed for the drug molecules. The drug molecules can only diffuse along with the wriggling of the polymer matrix.  相似文献   

5.
An electrically controlled drug release (ECDR) system based on sponge-like nanostructured conducting polymer (CP) polypyrrole (PPy) film was developed. The nanostructured PPy film was composed of template-synthesized nanoporous PPy covered with a thin protective PPy layer. The proposed controlled release system can load drug molecules in the polymer backbones and inside the nanoholes respectively. Electrical stimulation can release drugs from both the polymer backbones and the nanoholes, which significantly improves the drug load and release efficiency. Furthermore, with one drug incorporated in the polymer backbone during electrochemical polymerization, the nanoholes inside the polymer can act as containers to store a different drug, and simultaneous electrically triggered release of different drugs can be realized with this system.  相似文献   

6.
Polymer films with embedded liquid crystal inclusions (polymer-dispersed liquid crystals) are superb composites for addressable windows, flexible displays and optical storage. Their scattering behavior and electro-optic properties depend essentially on the shape and size of the liquid crystal inclusions, which are typically formed by phase separation from a multicomponent homogeneous mixture. Here, pulsed field gradient NMR is used to measure the self-diffusion coefficients of the liquid crystal and a photo-reactive monomer, which compose such a precursor mixture. The kinetics of holographic grating formation in this mixture can be predicted by inserting the NMR diffusion coefficient of the monomer and the polymerization rate in a reaction diffusion model. The ratio of diffusion rate over reaction rate is found to be in the limiting regime in which the kinetics of the grating formation is not sensitive to this parameter.  相似文献   

7.
Diffusion of drug molecules in polymer materials is of great importance in controlled drug release, and the investigation of the mechanism of drug release from the polymer matrix would help us to understand the release behavior of the controlled release system. In this work, molecular dynamics simulations were employed to investigate the diffusion mechanisms of penetrant molecules with different sizes in poly(lactic acid-co-ethylene glycol) (PLA-PEG). The size effect on the diffusion mechanism of penetrant molecules in polymer matrixes was discussed in detail. A competition mechanism in a two-step diffusion process-(1) motion within the cavities (free volumes), and (2) jumps between cavities or movement of the cavity itself originated from the wriggling of the polymer chains-was observed, and the contributions of these two factors to the diffusion coefficient were successfully separated. With the medium volume of penetrant molecules (e.g., benzene), a competition between these two steps was observed. Step (2) controlled the diffusion when penetrant molecules became bigger.  相似文献   

8.
Stimuli-sensitive drug delivery systems (DDSs) have attracted considerable attention in medical and pharmaceutical fields; thermosensitive DDS dealing with poly(N-isopropylacrylamide) (poly(NIPA)) have been widely studied. Novel NIPA emulsion gels, i.e., NIPA hydrogels containing distributed oil (oleyl alcohol) microdroplets, were synthesized by means of an emulsion-gelation method in which the polymerization of hydrogels in an aqueous phase in an oil-in-water (O/W) emulsion and the loading of a lipophilic drug (indomethacin) dissolved in an oil phase were accomplished simultaneously. The pulsatile (on-off) drug release from the NIPA emulsion gel loading indomethacin to a phosphate buffered saline (PBS) solution was successfully controlled by a temperature swing between 25 degrees C (release off) and 40 degrees C (release on). The mechanism of the pulsatile drug release was discussed in relation to the diffusion rate, distribution ratio, solvent exchange of NIPA hydrogels, and drug release from an NIPA organogel. The mechanism was as follows: the solvent exchange occurred within the NIPA emulsion gel (the NIPA gel-network absorbed oleyl alcohol with indomethacin) at temperatures above the LCST, and the diffusion rate of indomethacin through the solvent-exchanged gel was higher at 40 degrees C than at 25 degrees C.  相似文献   

9.
The development of new thin film fabrication techniques that allow for precise control of degradation and drug release properties could represent an important advance in the fields of drug delivery and biomedicine. Polyelectrolyte layer-by-layer (LBL) thin films can be assembled with nanometer scale control over spatial architecture and morphology, yet very little work has focused on the deconstruction of these ordered thin films for controlled release applications. In this study, hydrolytically degradable LBL thin films are constructed by alternately depositing a degradable poly(beta-amino ester) (polymer 1) and a series of model therapeutic polysaccharides (heparin, low molecular weight heparin, and chondroitin sulfate). These films exhibit pH-dependent, pseudo-first-order degradation and release behavior. The highly versatile and tunable properties of these materials make them exciting candidates for the controlled release of a wide spectrum of therapeutics.  相似文献   

10.
The synthesis of sequential full interpenetrating polymer networks (IPNs) based on poly (N‐isopropylacrylamide) (PNIPAAm) and negatively charged poly(N‐vinyl‐2‐pyrrolidone) (PNVP) was described and their swelling, drug release, and diffusion studies were investigated. PNIPAAm was used as a host network. According to swelling experiments, IPNs gave relatively lower swelling ratios compared to PNIPAAm hydrogel due to the higher cross‐linking density. Lidocaine (LD) was used as a model drug for the investigation of drug release behavior of IPNs. LD uptake of the IPNs were found to increase from 24 to 166 (mg LD / g dry gel) with increasing amount of PNIPAAm and AMPS contents in the IPN structure. It was observed that the specific interaction between drug and AMPS co‐monomer influenced the drug release profile. In the diffusion transport mechanism study in water, the results indicated that the swelling exponents n for all IPNs are in the range from 0.50 to 0.72. This implies that the swelling transport mechanism was transferred from Fickian to non‐Fickian transport, with increasing AMPS content and NIPAAm character in the IPN structure. In addition, diffusion of LD within the IPNs showed similar trend. The incorporation of AMPS leads to an increase in electrostatic interaction between charge sites on carboxylate ions and cationic LD molecules. Therefore, the highest diffusion coefficient (D) of drug was found for IPN2 sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
《Liquid crystals》1997,22(3):255-264
Light scattering from polymer dispersed liquid crystal (PDLC) material has been studied experimentally and by Monte Carlo simulation. Light scattering was measured as a function of both scattering angle and cell thickness. The cell thicknesses of practical interest are in an intermediate regime where neither single scattering nor light diffusion applies. Both the angular and the thickness dependence of the scattering intensity can be described accurately by a Monte Carlo simulation of multiple scattering from a homogeneous distribution of independent scatterers. The model smoothly interpolates between the single scattering limit for thin cells and the diffusion limit for thick cells. It can easily be extended to include any specific feature of a scattering display system.  相似文献   

12.
利用元胞自动机方法与相场模型的结合建立新型三维模拟相场模型.同时,为模拟真实的、三维的高分子结晶的过程,采用元胞自动机方法离散方程,且元胞几何形状的选取符合真实聚合物晶格扩散方式的物理规律,以及新建立的相场模型套用间规聚丙烯的实验参数.利用该模型模拟了多种三维立方体或者薄层的晶体形貌及其相互之间的演化过程,包括正方形、长方形、菱形、六边形、多层单晶等.通过模拟结果与真实形貌作对比来证明所建立的相场模型真实可靠性.  相似文献   

13.
The release profiles of model drugs (propranolol HCl, diclofenac sodium, salicylic acid and sulfasalazine) from low molecular weight poly(d,l-lactic acid) [d,l-PLA] tablets immersed in buffer solutions were investigated in an attempt to explore the mechanism of the related phenomena. It was confirmed that drug release is controlled by diffusion through the polymer matrix and by the erosion of the polymer. The pH of the surrounding medium influences the drug solubility as well as swelling and degradation rate of the polymer and therefore the overall drug release process. Physicochemical interaction between d,l-PLA and drug is an additional factor which influences the degree of matrix swelling and therefore its porosity and diffusion release process. Propranolol HCl shows extended delivery time at both examined pH values (5.4 and 7.4) and especially at pH 7.4 where release was accomplished in 190 days, most probably due to its decreased solubility at higher pH values. The acidic drugs gave shorter delivery times especially at pH 7.4. A slower drug release rate and more extended delivery time at pH 7.4 in comparison with that at pH 5.4 was recorded for tablets loaded with diclofenac sodium and salicylic acid. The opposite effect was observed with samples loaded with propranolol HCl.  相似文献   

14.
Release of calcein and griseofulvin (GRF) from control (gels in which solutes are dissolved in) and liposomal gels was studied using agarose-assisted immobilization as a technique to separate gels from drug-receptor compartments. Liposomes composed of phosphatidylcholine (PC) or distearoyl-glycero-PC and cholesterol (DSPC/Chol), and incorporating calcein or GRF were prepared by thin film hydration. After cleaning the liposomes they were dispersed in different hydrogels (carbopol 974 [1, 1.5 or 2% (w/w)], hydroxylethyl-cellulose (HEC) [4% (w/w)], or a mixture of the two), and release of calcein or GRF was followed by fluorescence or photometric technique, respectively. Results show that calcein release from liposomal gels is slower compared to control gels, and can be further retarded by using rigid-membrane liposomes (faster release from PC-liposome compared to DSPC/Chol-liposome gels). Additionally, calcein release is not affected by the lipid amount loaded (in the range from 2 to 8 mg/ml), therefore solute loading can be controlled according to needs.

Oppositely, GRF release from liposomal gels is determined by drug loading. At high drug loading levels (compared to GRF aqueous solubility), GRF is released with constant rate from liposomal gels irrespective of liposome type (PC or DSPC/Chol). Thereby, for amphiphilic/lipophilic drugs, drug properties (solubility, log P) determine the system behavior.

Calcein and GRF release from control carbopol gels is faster compared to HEC and mixture gels. The same is true for calcein in liposomal gels. Carbopol gel rheological properties were found to be significantly different (compared to the other gels), implying that these characteristics are important for drug diffusion from gels.  相似文献   


15.
We have investigated rapidly thermo-responsive NIPA gel containing polymer surfactant PMDP (NIPA-PMDP gel) as a potential drug carrier using (+)-l-ascorbic acid as a model drug. In the NIPA-PMDP gel system micelles of polymer surfactant PMDP are trapped by the entanglement of polymer chains inside the gel networks. Therefore, in principle the gel system tightly stores targeted drug in the micelles and rapidly releases controlled amount of the drug by switching on-off of external stimuli such as temperature or infrared laser beam. In our investigation on release profile, the NIPA-PMDP gel system showed completely different releasing behavior from that of the conventional NIPA gel. The NIPA-PMDP gel released rapidly all loaded (+)-l-ascorbic acid above the phase transition temperature (ca. 34 degrees C), while slowly released the corresponding amount of the drug below the temperature. In contrast, the conventional NIPA gel released more slowly limited amount of the drug above the phase transition temperature while similarly did to the NIPA-PMDP gel below the temperature. The release profile of the NIPA-PMDP gel seems to be governed by only kinetics of volume phase transition of the gel network but not by the hydrophobic domains of the micelles probably because of too hydrophilic nature of (+)-l-ascorbic acid.  相似文献   

16.
Novel drug-loaded cellulose acetate (CA) nanofibres were prepared by a modified coaxial electrospinning process, after which their zero-order drug release profiles were determined. Using 2 % (w/v) unspinnable CA solution as a sheath fluid, coaxial electrospinning can be conducted smoothly to generate ketoprofen (KET)-loaded CA nanofibres coated with a thin layer of blank CA. Scanning electron microscopy images demonstrated that nanofibres obtained from the modified coaxial process have a smaller average diameter, a narrower size distribution, more uniform structures, and smoother surface morphologies than those generated from single-fluid electrospinning. Transmission electron microscopy observations demonstrated that the nanofibres have a thin coating layer of blank CA on their surface with a thickness of ca. 15 nm. X-ray diffraction and differential scanning calorimetry verified that KET molecules in all of the nanofibres presented an amorphous state. Fourier transform infrared spectra demonstrated that CA has good compatibility with KET, which is brought about by hydrogen bonding. In vitro dissolution tests showed that the nanofibres coated with blank CA have no initial burst release effects and can provide a zero-order drug release profile over 96 h via a diffusion mechanism. The modified coaxial electrospinning method can provide new approaches in developing cellulose-based nano products with definite structural characteristics and improved functional performance.  相似文献   

17.
The present study aims to create a controlled-release system through the preparation and characterization of starch cellulose acetate co-acrylate (SCAA) polymer for application as a carrier for cancer drugs. SCA was prepared from maize starch and different ratios of cellulose acetate. The obtained product SCA was reacted with acrylic acid monomer to give cellulose acetate co-acrylate. The best ratio of starch to cellulose acetate was found to be 90:10, giving a stable product with acrylic acid. The cancer drug 8-(2-methoxyphenyl)-3,4-dioxo-6-thioxo-3,4,6,7-tetrahydro-2h-pyrimido[6,1-c]-[1,2,4]triazine-9-carbonitrile was dissolved in dimethylformamide then added gradually at the end of the previous reaction under stirring for 15 min. The prepared polymers with and without the drug were characterized by Fourier-transform infrared spectroscopy. Cuboids discs of the prepared polymer/drug were subjected to drug release in aqueous media at different pH values. The release was measured spectrophotometrically. It was found that the release rate depends on the pH of the aqueous medium as well as on the concentration of the drug loaded onto the polymer carrier. Above pH 12, the polymer containing the drug degraded completely within 1 h after being subjected to alkaline media. Sustained release of drug extended to about 20 days. The amount released depended on the pH of the media in the following order: basic media > acidic media > neutral. According to Higuch’s equation, the diffusion coefficient was found to be 4.2 × 10?8 and 5.5 × 10?8 cm s?1 for the two evaluated concentrations (1.5 and 2 %) of active organic compound (drug).  相似文献   

18.
The growth of polymer single crystals has been simulated on the basis of a simple two-dimensional ‘entropic barrier’ model. The chain is described by a sequence of growth units. Their additions and removals are determined by rate constants obeying detailed balance. The crystallization is then simulated by a kinetic Monte Carlo algorithm. An application of the model to specific crystallizable polymers (polyethylene, isotactic polystyrene, isotactic polypropylene, polyhydroxybuterate and polypivalolactone) is presented. Input parameter values for the model are derived from the respective surface free energies, bulk enthalpies, melting points and crystallographic repeat lengths. The only free parameter is the length of a polymer growth unit. This is set to half the lamellar crystal thickness at large undercooling. The lamellar thicknesses calculated on this basis are in good agreement with experimental data. An analysis of the growth unit lengths of the different polymers indicates a scaling with the chain persistence length in the melt.  相似文献   

19.
A new strategy has been developed for the controlled release of a hydrophobic anticancer drug, camptothecin (CPT), which suffers a limited therapeutical utility because of its poor water solubility. CPT was first solubilized in the solution of a cationic surfactant, dodecyltrimethylammonium bromide (DTAB). It has been demonstrated that the presence of DTAB has increased the solubility of CPT significantly. In a 50 mM DTAB solution, the drug’s solubility was enhanced to 85 μM, 22 times of its solubility in pure water. The micellar drug solution of CPT-DTAB was subsequently used to prepare agarose hydrogels, which act as the drug carriers in the release studies. To fully take advantage of the cationic property of DTAB, negatively charged κ-carrageenan was added as a guest polymer in some hydrogel samples. The release of CPT from these hydrogel-surfactant systems was performed at 37 °C and the effects of DTAB and κ-carrageenan on the release of CPT were studied respectively. By fitting to the well-known Fickian diffusion model, the diffusion coefficients of CPT were obtained.  相似文献   

20.
Hydroxyapatite (HAp) nanorods possess vast potential applications in various fields, and here HAp nanorods with high aspect ratio were synthesized via a convenient two‐stage precipitation‐hydrolysis process at 60°C under atmospheric pressure. The precursor of CaHPO4 at precipitation stage is well crystallized as nubby morphology with CTAB as surfactant, while CaHPO4 was dissolved and CTA+ stabilized the HAp nuclei during the hydrolysis stage. OH? ions were absorbed onto the active crystal surface, where Ca2+ and PO43+ reacted with OH? to make the nuclei grow into larger crystals, and highly crystalline HAp nanorods were obtained by Ostwald ripening. The loaded drug of IBU on the HAp crystals can be 100% released in 24 h. PVP modified HAp nanorods can increase the drug‐loading capacity and release drug faster than pure HAp nanorods. The results indicate that HAp nanorods modified with suitable surfactants are of great use in drug delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号