首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel solution-phase synthesis of combinatorial libraries of hexahydro-1 H-isoindolones exploiting a novel "tactical combination" of Cu-catalyzed three-component coupling and Diels-Alder reactions was accomplished. Three distinct libraries consisting of 24 members (library I), 60 members (library II), and 32 members (library III) were constructed. Variation of three substituents on the isoindolone scaffold in library I was exclusively achieved by the choice of the building blocks. In the syntheses of libraries II and III, sublibraries of isoindolone scaffolds were prepared initially in a one-pot/two-step process and were further diversified via Pd-catalyzed Suzuki cross-coupling reaction with boronic acids at two different diversification points. The Lipinski profiles and calculated ADME properties of the compounds are also reported.  相似文献   

2.
Macrocycles provide an attractive modality for drug development, but generating ligands for new targets is hampered by the limited availability of large macrocycle libraries. We have established a solution-phase macrocycle synthesis strategy in which three building blocks are coupled sequentially in efficient alkylation reactions that eliminate the need for product purification. We demonstrate the power of the approach by combinatorially reacting 15 bromoacetamide-activated tripeptides, 42 amines, and 6 bis-electrophile cyclization linkers to generate a 3780-compound library with minimal effort. Screening against thrombin yielded a potent and selective inhibitor (Ki = 4.2 ± 0.8 nM) that efficiently blocked blood coagulation in human plasma. Structure–activity relationship and X-ray crystallography analysis revealed that two of the three building blocks acted synergistically and underscored the importance of combinatorial screening in macrocycle development. The three-component library synthesis approach is general and offers a promising avenue to generate macrocycle ligands to other targets.

Combination of three efficient chemical reactions allows for solution-phase synthesis of 3780 macrocycles and identification of potent thrombin inhibitor.  相似文献   

3.
The relative reactivity of building blocks is critical for a successful preparation of combinatorial libraries. Here, we present a method for measuring the reactivity of carboxylic acid building blocks in amide-forming reactions. The method involves competitive reactions between a reference and test acid and a tetraphenylporphyrin reaction partner with four reactive sites. Relative reactivities are calculated on the basis of the distribution of substituted porphyrins found in MALDI-TOF mass spectra. Reactivities thus determined were used to prepare reactivity-adjusted building block mixtures. These were reacted with amino-terminal oligonucleotide and peptide scaffolds on solid support, generating small libraries suitable for spectrometrically monitored selection experiments (SMOSE). The rate of building block "drop outs" that fail to couple as expected was not substantially lowered by acquiring spectra from two reactions, performed with different ratios of building blocks, where the effect of a given substituent on the desorption/ionization yield of the porphyrin can be eliminated. Instead, coupling building blocks of similar size together or employing N-hydroxysuccinimide esters rather than activating with a "uronium salt" were found to improve the quality of libraries generated via competitive reactions.  相似文献   

4.
A series of novel heterocyclic combinatorial libraries containing 4H-thieno[3,2-b]pyrrole, thieno[2',3':4,5]-pyrrol[1,2-d][1,2,4]triazine and thieno[2',3':4,5]pyrrolo[1,2-a]pyrazine heterocyclic moieties were obtained by parallel solution-phase synthesis. Key steps include different reactions of initial alkyl 4H-thieno[3,2-b]-pyrrole-5-carboxylates, such as alkylation with alkylating agents; transformation of the carboxylate group into different reactive functionalities, followed by reactions with electrophilic species; intramolecular cyclizations; and amide bond formation. Simple manual techniques for parallel reactions were coupled with easy purification procedures to give high-purity final products.  相似文献   

5.
Five sets of 27‐membered combinatorial libraries of alicyclic β‐lactams were prepared via liquid‐phase Ugi 4‐center 3‐component reactions (U‐4C‐3CR) utilizing 3 different cis β‐amino acids, 3 different isonitriles and 5×3 sets of aldehydes. Through combinations of the building blocks of one of these libraries, all of the possible sublibraries were also generated. A few azetidinone derivatives were synthesized individually by parallel synthesis.  相似文献   

6.
7.
Shao N  Guo Z 《Organic letters》2005,7(16):3589-3592
An N-terminal glycopeptide of asialoglycophorin AM with three O-linked T antigens was prepared by "solution-phase synthesis with solid-state workup" using unprotected glycosyl amino acids as building blocks. For the glycopeptide assembly, all reactions were conducted in homogeneous NMP solutions, while the product of each reaction was readily isolated as solid precipitates upon addition of diethyl ether. In the preparation of building blocks, a robust approach was established to selectively alpha-glycosylate Ser and Thr derivatives. [reaction: see text]  相似文献   

8.
Until recently, repetitive solid-phase synthesis procedures were used predominantly for the preparation of oligomers such as peptides, oligosaccharides, peptoids, oligocarbamates, peptide vinylogues, oligomers of pyrrolin-4-one, peptide phosphates, and peptide nucleic acids. However, the oligomers thus produced have a limited range of possible backbone structures due to the restricted number of building blocks and synthetic techniques available. Biologically active compounds of this type are generally not suitable as therapeutic agents but can serve as lead structures for optimization. “Combinatorial organic synthesis” has been developed with the aim of obtaining low molecular weight compounds by pathways other than those of oligomer synthesis. This concept was first described in 1971 by Ugi.[56f,g,59c] Combinatorial synthesis offers new strategies for preparing diverse molecules, which can then be screened to provide lead structures. Combinatorial chemistry is compatible with both solution-phase and solid-phase synthesis. Moreover, this approach is conducive to automation, as proven by recent successes in the synthesis of peptide libraries. These developments have led to a renaissance in solid-phase organic synthesis (SPOS), which has been in use since the 1970s. Fully automated combinatorial chemistry relies not only on the testing and optimization of known chemical reactions on solid supports, but also on the development of highly efficient techniques for simultaneous multiple syntheses. Almost all of the standard reactions in organic chemistry can be carried out using suitable supports, anchors, and protecting groups with all the advantages of solid-phase synthesis, which until now have been exploited only sporadically by synthetic organic chemists. Among the reported organic reactions developed on solid supports are Diels–Alder reactions, 1,3-dipolar cycloadditions, Wittig and Wittig–Horner reactions, Michael additions, oxidations, reductions, and Pd-catalyzed C? C bond formation. In this article we present a comprehensive review of the previously published solid-phase syntheses of nonpeptidic organic compounds.  相似文献   

9.
Herein we report a solid-phase synthetic approach to [Ala7]-phalloidin (1). Prior syntheses of phallotoxins were carried out using solution-phase routes that required large scale and preclude library production. The route presented here consists of solution-phase preparation of key orthogonally protected amino acid building blocks, followed by a solid-phase peptide synthesis sequence, featuring two resin-bound macro-cyclization reactions. The final product mixture was composed of two atropisomeric compounds, one designated "natural" (1) and the other designated "non-natural" (1'). The structures of these species were modeled using restrained energy minimization with NMR-derived restraints.  相似文献   

10.
An efficient and rapid solution-phase combinatorial synthesis of the SAG library was developed. The salient features for this library synthesis is the application of carbothioamide-derived palladacycle-catalyzed Suzuki coupling reactions for the parallel synthesis of a series of pyridine-based biaryl aldehydes under aerobic conditions and a direct N-alkylation of carbamates using NaH as base in DMF in the presence of catalytic amount of water. The resultant library has been submitted to biological screening to evaluate their potential role in the regulation of Hedgehog pathway.  相似文献   

11.
In combination with high throughput screening, combinatorial organic synthesis of large numbers of pharmaceutically interesting compounds may revolutionize the drug discovery process. Although combinatorial organic synthesis on solid supports is a useful approach, several groups are focusing their research efforts on liquid-phase combinatorial synthesis by the use of soluble polymer supports to generate libraries. This macromolecular carrier, in contrast to an insoluble matrix, is soluble in most organic solvents and has a strong tendency for precipitation in particular solvents. Liquid-phase combinatorial synthesis is a unique approach since homogeneous reaction conditions can be applied, but product purification similar to the solid-phase method can be carried out by simple filtration and washing. This method combines the positive aspects of classical solution-phase chemistry and solid-phase synthesis. This review examines the recent applications (1995-1999) of soluble polymer supports in the synthesis of combinatorial libraries.  相似文献   

12.
The synthesis of water-soluble, organometallic macrocycles is described. They were obtained by self-assembly in reactions of the half-sandwich complexes [[Ru(C6H5Me)Cl2]2], [[Ru(p-cymene)Cl2]2], [[Rh(Cp)Cl2]2], and [[Ir(Cp*)Cl2]2] with the ligand 5-dimethylaminomethyl-3-hydroxy-2-methyl-4-(1H)-pyridone in buffered aqueous solution at pH 8. The structure of the Ru-(p-cymene) complex was determined by single-crystal X-ray crystallography. Upon mixing, these complexes undergo scrambling reactions to give dynamic combinatorial libraries. In combination with structurally related complexes based on amino-methylated 3-hydroxy-2-(1H)-pyridone ligands, an exchange of metal fragments but no mixing of ligands was observed. This self-sorting behavior was used to construct dynamic combinatorial libraries of macrocycles, in which two four-component sub-libraries are connected by two common building blocks. This type of network topology influences the adaptive behavior of the library as demonstrated in selection experiments with lithium ions as the target.  相似文献   

13.
Oligosaccharides, commonly found on the cell surfaces, are deeply involved in a variety of important biological functions, yet demanding difficulties synthesizing such structures limit the investigation of their functions. Technologies to chemically synthesize these oligosaccharides have dramatically advanced during the last two decades mainly due to the introduction of good anomeric leaving groups. In addition, tactical analyses have been addressed to enhance the overall efficiency of oligosaccharide synthesis. Based on the advancement of solution-phase chemistry, solid-phase technologies are being investigated in connection with the current trend of combinatorial chemistry and high throughput screening. This review summarizes the necessary solution-phase methodologies, the status of solid-phase synthesis of oligosaccharides, and combinatorial synthesis of oligosaccharide libraries.  相似文献   

14.
Diversity-oriented synthesis (DOS) and fluorous mixture synthesis (FMS) are two aspects of combinatorial chemistry. DOS generates library scaffolds with skeletal, substitution, and stereochemistry variations, whereas FMS is a highly efficient tool for library production. The combination of these two aspects in solution-phase synthesis of two novel heterocyclic compound libraries is presented in this paper. Mixtures of different fluorous amino acids undergo [3 + 2] cycloadditions followed by postcondensation reactions. The mixtures are then demixed by fluorous HPLC. Fluorous tags are removed by cyclization to afford hydantoin- and benzodiazepinedione-fused heterocyclic compounds as individual, pure, and structurally defined molecules. The application of MS-directed HPLC purification and parallel four-channel LC/MS analysis further increases the efficiency of FMS.  相似文献   

15.
Reports on dynamic combinatorial chemistry have almost exclusively involved small libraries of 10-100 compounds. We now show how more than 9000 compounds can be screened in a single LC-MS analysis to reveal a series of new receptors that bind ephedrine in water. These results demonstrate the feasibility of screening DCLs that are substantially larger than the solution-phase libraries reported thus far.  相似文献   

16.
We describe the use of dynamic combinatorial chemistry to discover a new series of linear hydrazone-based receptors that bind multiple dihydrogen phosphate ions. Through the use of a template-driven, selection-based approach to receptor synthesis, dynamic combinatorial chemistry allows for the identification of unexpected host structures and binding motifs. Notably, we observed the unprecedented selection of these linear receptors in preference to competing macrocyclic hosts. Furthermore, linear receptors containing up to nine building blocks and three different building blocks were amplified in the dynamic combinatorial library. The receptors were formed using a dihydrazide building block based on an amino acid-disubstituted ferrocene scaffold. A detailed study of the linear pentamer revealed that it forms a helical ditopic receptor that employs four acylhydrazone hydrogen-bond donor motifs to cooperatively bind two dihydrogen phosphate ions.  相似文献   

17.
The parallel solution-phase synthesis of more than 3000 substituted thienopyrimidin-4-ones has been accomplished. Key reactions include assembly of the 2-thioxopyrimidin-4-one ring by condensation of isomeric aminothiophenecarboxylates or their appropriate reactive derivatives (isothiocyanates or dithiocarbamates) with the corresponding isothiocyanates or amines. The libraries from libraries were then obtained in good yields and purities using solution-phase alkylation and acylation methodologies. Simple manual techniques for parallel reactions using special CombiSyn synthesizers were coupled with easy purification procedures (crystallization from the reaction mixtures) to give high-purity final products. The scope and limitations of the developed approach are discussed.  相似文献   

18.
The generation of diverse chemical libraries using the "libraries from libraries" concept by combining solid-phase and solution-phase methods is described. The central features of the approaches presented are the use of solid-phase synthesis methods for the generation of a combinatorial polyamine library. Following cleavage from the resin with HF, the polyamine library was reacted with ethyl nitrite in the solution phase to yield the desired nitrosamine library in good yield and purity. The approaches described enable the efficient syntheses of individual nitrosamines as well as mixture-based nitrosamine libraries.  相似文献   

19.
The parallel solution-phase synthesis of a new combinatorial library of 3-[4-(R1-coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acid amides 9 has been developed. The synthesis involves two steps: 1) the synthesis of core building blocks - 3- [4-(coumarin-3-yl)-1,3-thiazol-2-ylcarbamoyl]propanoic acids, 6 - by the reaction of 3-(omega-bromacetyl)coumarins 1 with 3-amino(thioxo)methylcarbamoylpropanoic acid (5); 2) the synthesis of the corresponding 3-[4-(coumarin-3-yl)-1,3-thiazol-2-yl- carbamoyl]propanoic acids amides 9 using 1,1'-carbonyldimidazole as a coupling reagent. The advantages of the method compared to existing ones are discussed.  相似文献   

20.
An efficient and scalable synthesis of three differentially protected 2-(hydroxymethyl)piperazines is presented, starting from optically active and commercially available (2S)-piperazine-2-carboxylic acid dihydrochloride. These synthetic building blocks are useful in the preparation of biologically active compounds and as chemical scaffolds for the construction of combinatorial libraries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号