首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-photon photoemission spectroscopy using femtosecond laser pulses is used to investigate the excitation and decay mechanisms of the surface plasmon resonance in Ag nanoparticles grown on graphite. The resonant excitation of this collective excitation leads to a two-orders-of-magnitude-enhanced two-photon photoemission yield from a graphite surface with Ag nanoparticles compared to the yield from pure graphite. From the shape of the photoemission spectra, the polarization dependence of the photoemission yield and the excitation probabilities for different excitation pathways we conclude that excitation with 400-nm femtosecond laser pulses leads to the coherent multiple excitation of the surface plasmon in the Ag nanoparticles. This multiply excited plasmon mode can decay via the coupling to a single-particle excitation leading to the emission of an electron if its final state is located in the continuum. The surface plasmon in metallic nanoparticles is a model system to investigate collective excitations in multiphoton processes. Received: 26 June 2000 / Accepted: 2 September 2000 / Published online: 12 October 2000  相似文献   

2.
Resonant excitation of the plasmon polariton in supported nanoparticles leads to a strong enhancement of the multiphoton photoemission yield and consequently, the total yield is dominated by the emission from the nanoparticles although they cover only a minor fraction of the surface. This allows investigation of the electron dynamics in supported nanoparticles, directly in the time domain. Here, Ag nanoparticles grown on graphite are used to demonstrate that the transient shape of the photoemission spectrum in time-resolved two-color multiphoton photoemission spectroscopy, reveals the electron relaxation within the nanoparticle, and the dynamic charge transfer between substrate and nanoparticle. The photoemission spectra map the transient electron energy distribution and exhibit a transient shift that is attributed to a dynamic charging of the nanoparticle. The comparison with model calculations comprising the full relaxation cascade in the nanoparticle and substrate, shows that the dynamic charge transfer accounts for almost half of the total deposited energy in the nanoparticle. PACS 78.67.Bf; 73.22.-f; 67.40.Fd; 78.47.+p  相似文献   

3.
Thin noble metal films (Ag, Au and Cu) on Si (111) have been investigated by optical second-harmonic generation (SHG) in combination with synchrotron radiation photoemission spectroscopy. The valence band spectra of Ag films show a quantization of the sp-band in the 4-eV energy range from the Fermi level down to the onset of the d-bands. For Cu and Au the corresponding energy range is much narrower and quantization effects are less visible. Quantization effects in SHG are observed as oscillations in the signal as a function of film thickness. The oscillations are strongest for Ag and less pronounced for Cu, in agreement with valence band photoemission spectra. In the case of Au, a reacted layer floating on top of the Au film masks the observation of quantum well levels by photoemission. However, SHG shows a well-developed quantization of levels in the Au film below the reacted layer. For Ag films, the relation between film thickness and photon energy of the SHG resonances indicates different types of resonances, some of which involve both quantum well and substrate states. Received: 16 October 2001 / Revised version: 14 March 2002 / Published online: 29 May 2002  相似文献   

4.
We have built and tested a novel type of scanning photoemission microscope. The instrument uses ultraviolet emission lines at photon energies of 16.8 eV (Ne I), 21.2 eV (He I) and 40.8 eV (He II). The radiation is focused into a spot of about 2 m diameter on the specimen surface by means of an ellipsoidal mirror. The emitted photoelectrons are recorded in normal emission geometry by a standard electron energy analyzer. Two modes of operation are possible: spatially resolved electron energy distribution curves may be recorded from a fixed point on the sample. As the specimen is scanned piezo-mechanically in two dimensions across the beam, images within a fixed electron energy bandwith may be formed. We report on the realization and performance of the new microscope.  相似文献   

5.
An extreme ultraviolet (EUV) laser light source based on high-harmonic generation is presented. Coherent radiation in the photon energy range hν=20–120 eV is produced in the conversion media argon, neon and helium. High-harmonic radiation in the energy range 20–50 eV is applied to investigate photoemission spectra of Pt (111) and CO/Pt (111). In the photoemission spectra of the clean surface, new secondary electron emission structures are found which influence the cross section analysis of the CO states. When taking these Pt resonances into consideration, the 4σ and 5σ CO shape resonances are found at photon energies of 37 eV and 28 eV, respectively. Additionally, a resonance at hν=31 eV is also observed for the CO 1π state, in contrast to formerly published experimental data. Experimental and theoretical data suggest that this resonance is not connected to the well-known shape resonances in the σ-channel. Based on theoretical approaches, it is identified as an autoionization resonance. Received: 8 April 2002 / Accepted: 22 May 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +49-251/833-3604, E-mail: kutzner@uni-muenster.de  相似文献   

6.
We have studied the valence band photoemission spectra of Ni(100) and Ni(110) single crystals near the excitation threshold for 3p core electrons. The resonant behavior of the 6 eV satellite does not depend on both the surface orientation and the polarization of the electric vector of an incident light for excitation. These results indicate that the 6 eV satellite should be under little influence of spatial symmetry of the valence band. In the angle-resolved photoemission spectra of Ni(100), we have observed another broad feature near the 6 eV satellite. It shows the large energy dispersion and is interpreted as due to the interband transition. In Ni(110), we have observed the weak valence band satellites at binding energies of about 9.3 eV and 13.4 eV. They do not show well-defined resonance around the 3p threshold.  相似文献   

7.
We produced free beams of cold nanometer-sized particles of lithium, sodium and potassium and measured the three corresponding photo-ionization yield curves. Quadratic (Fowler) plots, originally developed for bulk surfaces, were found to provide a good fit to the threshold shape and were used to obtain the particle ionization potentials. The latter match precisely the bulk work functions cited in the literature, suggesting that photo-ionization of free nanoclusters may form a useful complement to traditional photoelectron studies of surfaces. Within 0.25–1 eV above the threshold, the ionization efficiency begins to drop. This effect, which has parallels in bulk-surface and small-cluster photoemission, is presently not well understood but may be related to an interplay between electron emission and collective surface plasma excitations. Received: 21 June 2001 / Revised version: 7 July 2001 / Published online: 10 October 2001  相似文献   

8.
The roughened Cu(110) surface was prepared by annealing the clean surface at various temperatures ranging from 700 to ∼1000 K. A significant drop in intensity of reflection anisotropy spectroscopy (RAS) peak at 2.1 eV photon energy as a function of increasing sample temperature was found for annealing above the roughening transition at 900 K. The observed change of 2.1 eV peak in RAS spectra is because of the surface state Fermi level shift due to temperature change. The RAS result is in good agreement with an unoccupied surface state energy using inverse photoemission spectroscopy (IPES). New IPES results indicate that the unoccupied surface state intensity decreases with increasing annealing temperature. It was also found that the unoccupied surface state was shifted. IPES results provide that the contributions of the surface state to surface optical properties at 2.1 eV are relevant for the RAS technique.  相似文献   

9.
We describe photoemission results from pure and Sb-doped SnO2 nanoparticles deposited on gold substrates. Photoelectron spectra with synchrotron radiation were recorded for Sn 3d, Sb 3d and O 1s core levels and valence bands in the 500-1200 eV energy range. For pure SnO2 nanoparticles the surface is terminated by an oxygen rich layer with no obvious surface environment for Sn. When doped n-type with 9.1% or 16.7% Sb, dopant atoms are concentrated near the surface of the nanoparticles. The valence state of the dopant atoms is predominantly SbV. Plasmon satellite features are also observed in core level photoemission spectra and their intensity relative to the main peak increases with increasing photon energy. Received 30 November 2000  相似文献   

10.
Time-resolved two photon photoemission electron microscopy   总被引:1,自引:0,他引:1  
Femtosecond, time-resolved two photon photoemission has been used to map the dynamics of photo-excited electrons at a structured metal/semiconductor surface. A photoemission microscope was employed as a spatially resolving electron detector. This novel setup has the potential to visualize variations of hot electron lifetimes in the femtosecond regime on heterogeneous sample surfaces and nanostructures. Received: 22 October 2001 / Revised version: 10 January 2002 / Published online: 7 February 2002  相似文献   

11.
n + clusters (n=2-9)deposited onto highly oriented pyrolytic graphite (HOPG) substrates at liquid nitrogen temperatures. The deposition was carried out with variable kinetic energies of the clusters. Clusters deposited with high kinetic energy (up to 60 eV/cluster) become fragmented upon impact. For low deposition energies (1–4 eV/cluster) the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the soft deposited clusters retain their size and identity on the sample. The phase of the odd/even effect suggests that transient negatively charged cluster ions serve as an intermediate step in the two-photon photoemission process. The lifetime of the anions rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters. Received: 26 October 1998 / Revised version: 16 December 1998  相似文献   

12.
We describe modulated photoemission spectroscopy, in which an internal (sample) parameter such as temperature, or an external (apparatus) parameter such as wavelength is varied. A general formalism is developed for modulated photoemission spectroscopy and then illustrated using temperature modulated photoemission spectra and yields for Au obtained in the ~ 6 to 11.6 eV photon energy range. Modulated s-p band photoemission data are described in terms of photoemission critical points in order to explain the nature of the modulated structures in the s-p band region and relate experiment to energy band thresholds obtained from a recent band calculation for Au. Application of the formalism to modulated d-band emission leads to a method for extracting d-band deformation potentials. For example, we find that the upper d band edge moves upward with respect to EF at a rate of 2 to 6 × 10?4 eV/K. Modulation of the quantum yield is described and our measurements are compared with modulated optical data.  相似文献   

13.
A resonant enhancement of valence band photoemission features in Ni near the 3s threshold is presented. The emission behavior with photon energy of the Ni-3d band is characteristic of a Fano-type resonance. In addition to the main 3d-band emission and 6eV binding energy satellite, a weak satellite is observed at 7.2eV below the Fermi level with photon energies in the vicinity of the 3s threshold.  相似文献   

14.
Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.  相似文献   

15.
Pronounced angle-of-incidence and polarization dependences of the photoemission yields from Cu(111) and Au(111) were observed in the photon energy range of 3.4–5.0 eV with the interfacial photoemission-into-electrolyte technique. Strong evidence was obtained that these vectorial features are due to the anisotropic bulk excitation of photoelectrons and restrictive escape condition of parallel k-vector conservation. Calculations, based upon a simple model of anisotropic bulk photoemission, show good agreement with the experimental results.  相似文献   

16.
Nitridation of hydrogen-terminated silicon in a diluted N2:N2O atmosphere was studied by X-ray photoemission spectroscopy and high-resolution electron microscopy. Our analysis showed that the broad N(1s) peak of width 1.5 eV at 398–399 eV, usually reported in the literature, is preceded by the formation of a narrow peak of width around 1.0 eV at 397.5 eV, attributed to the moiety Si3N in which silicon is only marginally oxidized, and two other peaks at 400.0 eV and 401.5 eV, attributed to the moieties Si2NOSi and SiNO, respectively. Received: 11 July 2001 / Accepted: 19 September 2001 / Published online: 20 December 2001  相似文献   

17.
This work enlightens the threshold photoemission magnetic circular dichroism (MCD) and its adaption on photoemission electron microscopy (PEEM) using lasers. MCD is a simple and efficient way to investigate magnetic properties since it does not need any spin analyzers with low efficiency, and thus the MCD related techniques have developed to observe magnetic domains. Usually, MCD in a total yield measurement in the valence band with weak spin–orbit coupling (SOC) excited by low photon energy (≤ 6 eV) does not compete with the X-ray magnetic circular dichroism (XMCD) with strong SOC. XMCD PEEM observation of magnetic domains has been successfully established while MCD PEEM derived from valence bands has not been. However, using angle and energy resolved photoelectron, valence band MCD provides large asymmetry similar to that by XMCD. Threshold measurement of photoelectron in a total electron yield procedure can take advantage of the measurement of photoelectrons with a limited angle and energy mode. This restriction of the photoelectron makes the threshold MCD technique an efficient way to get magnetic information and gives more than 10% asymmetry for Ni/Cu(0 0 1), which is comparable to that obtained by angle resolved photoemission. Thus the threshold MCD technique is a suitable method to observe magnetic domains by PEEM. For threshold MCD, incident angle dependence and high sensitivity to out-of-plane magnetized films compared with in-plane ones are discussed. Ultrashort pulse lasers make it feasible to measure two photon photoemission MCD combined with PEEM, where resonant excitation has a possibility to enhance dichroic asymmetry. Recent results for valence band magnetic dichroism PEEM are presented.  相似文献   

18.
We observed high-order 2- to 4-photon photoemission and above threshold photoemission (ATP) processes with 3.07 eV light from the Cu(001) surface. The intensity of 3-photon photoemission via excitation through the n = 1 image potential state significantly exceeded that of the 2-photon process. The ATP occurs either via single photon transitions from the image potential resonances above the vacuum level or by multiphoton transitions from image potential states below the vacuum level. The experimental ratio of the m- to (m + 1)-photon process yields is sensitive to the electronic band structure of the solid.  相似文献   

19.
Unpolarized light ejects spin polarized electrons from Pt(111) and Au(111) even if the electron emission occurs normal to the surface. For off normal incidence of 11.8 eV, 16.9 eV, and 21.2 eV radiation, and for the main peaks in the photoemission spectra, a degree of spin polarization of up to 30% or more is found for the spin polarization component P y perpendicular to the reaction plane. A crystal rotation about its surface normal does not change P y . P y is largest for transitions from bands with symmetry 6 3 . All these experimental findings agree with a recent theoretical prediction [1] of a new spin effect by Tamura and Feder.  相似文献   

20.
李智浩  曹亮  郭玉献 《物理学报》2017,66(22):224101-224101
利用基于同步辐射的近边X射线吸收精细结构谱(NEXAFS)和共振光电子谱(RPES)研究了苝四甲酸二酐分子(PTCDA)薄膜的电子结构.碳K边NEXAFS谱中能量小于290 eV的四个峰对应于PTCDA分子不同化学环境碳原子1s电子到未占据分子轨道的共振跃迁.RPES谱中观察到共振光电子发射和共振俄歇电子发射导致的共振峰结构,以及二次谐波激发的碳1s信号.根据电子动能对入射光能量的依赖性分别对三类峰结构进行了归属.同时,发现PTCDA分子轨道共振光电子峰的强度具有光子能量依赖性.这种能量选择性共振增强效应是由于PTCDA分子轨道空间分布差异导致的.共振俄歇峰主要源于高结合能(4.1 eV)分子轨道能级电子参与的退激发过程.明确RPES实验谱图中各个峰结构的起源有助于准确利用基于RPES的芯能级空穴时钟谱技术定量估算有机分子/电极异质界面处电子从分子未占据轨道到电极导带的超快转移时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号