首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The light scattering technique was used to investigate the viscoelastic parameters characterizing director twist distortions in miscible nematic mixtures of 5CB (pentacyanobiphenyl) with two side chain liquid crystal polymers and a main chain liquid crystal polymer. By applying an AC electric field to homeotropically-aligned nematic monodomains of the mixtures, the field-dependent scattering intensities and director orientation fluctuation relaxation rates yield, respectively, the twist elastic constant K22 and viscosity coefficient γ1. The results directly demonstrate that the addition of liquid crystal polymers causes substantial decreases of the relaxation rates for dynamic light scattering from the twist mode and these changes are due to small decreases in K22 coupled with large increases in γ1. The decrements in K22 are comparable for both side chain and main chain liquid crystal polymers. The relative increase in the twist viscosity for the side chain liquid crystal polymers is much smaller than those of main chain polymers. A theoretical model is used to qualitatively interpret the difference between the viscous behaviour of the twist mode for both side chain and main chain liquid crystal polymers in a nematic solvent.  相似文献   

2.
The functional form of the azimuthal anchoring energy, i.e. the anisotropic part of the interfacial free energy, at the interface between the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl and an obliquely evaporated SiO substrate is measured for the first time by using a reflectometric method. The anchoring energy function is obtained by measuring the director rotation on the interface caused by an external magnetic field ranging from 0 to 2·3 T. The dependence of the anchoring energy on the director azimuthal angle is found to be well fitted by the function Wa(ϕ) = Wasin2 ϕ in agreement with the predictions of the Berreman model for the anchoring at a grooved interface.  相似文献   

3.
M. &#x  karabot  E. Osmanagi     I. Mu&#x  evi 《Liquid crystals》2006,33(5):581-585
Dynamic light scattering spectroscopy has been used to determine the temperature dependence of the anchoring strength of the nematic liquid crystal 8OCB on DMOAP-silanated glass surfaces inducing homeotropic alignment. Wedge-type glass cells with known thickness profile starting from 150 nm to several microns have been used in the experiments. The relaxation rates of the nematic fluctuations with the wave vector perpendicular to the confining surfaces have been measured as a function of the cell thickness. Fitting of the thickness dependence of the relaxation rate allows for straightforward determination of the surface extrapolation length and therefore also the strength of the surface anchoring, which is 1×10-4 J m-2. The overall experimental accuracy of the experiments is discussed.  相似文献   

4.
Nematic-isotropic interfaces exhibit novel dynamics due to anchoring of the liquid crystal molecules on the interface. The objective of this study is to demonstrate the consequences of such dynamics in the flow field created by an elongated nematic drop retracting in an isotropic matrix. This is accomplished by two-dimensional flow simulations using a diffuse-interface model. By exploring the coupling among bulk liquid crystal orientation, surface anchoring and the flow field, we show that the anchoring energy plays a fundamental role in the interfacial dynamics of nematic liquids. In particular, it gives rise to a dynamic interfacial tension that depends on the bulk orientation. Tangential gradient of the interfacial tension drives a Marangoni flow near the nematic-isotropic interface. Besides, the anchoring energy produces an additional normal force on the interface that, together with the interfacial tension, determines the movement of the interface. Consequently, a nematic drop with planar anchoring retracts more slowly than a Newtonian drop, while one with homeotropic anchoring retracts faster than a Newtonian drop. The numerical results are consistent with prior theories for interfacial rheology and experimental observations.  相似文献   

5.
The structural, material and electro-optical properties of novel, halogenated nematic liquid crystals which contain quite different functional groups are correlated. Synergisms which lead to broad mesophases, low viscosities and large dielectric anisotropies further improve the performance of actively and passively addressed, high information content liquid crystal displays. Some recent developments, such as operation of supertwisted nematic displays with not only linear, but also circularly polarized light, are included. A recently presented, efficient liquid crystal colour projection concept, whose functional elements, i.e. polarizers, filters and modulators, consist entirely of liquid crystal devices, is reviewed. Its circular polarizers and filters are made up of novel, negative dielectric anisotropic cholesteric liquid crystals designed such that, dislocation-free, optically uniform, planar textures result from electric field alignment. Novel, non-linear optical ferroelectric liquid crystals which exhibit very large and stable second order harmonic coefficients d22 = 5 pm V-1 have the potential to be used in integrated optical devices, such as frequency converters and Pockels modulators. Photopolymerization of polymer-coated substrates with linearly polarized light is shown to induce anisotropic, uniaxial orientation of the polymer side chains without mechanical treatment. The resulting anisotropic dispersive surface interaction forces align adjacent liquid crystal molecules parallel. This new, photoinduced liquid crystal aligning technique renders the generation of azimuthal director patterns possible. It opens up interesting possibilities for realizing new optical and electro-optical devices, including hybrid and stereo liquid crystal displays.  相似文献   

6.
《Liquid crystals》2001,28(12):1855-1862
The surface tension of a low molar mass liquid crystal (LMMLC), 4-cyano-4'-n-heptyloxybiphenyl (70CB), was measured as a function of temperature using the pendant drop method, forming drops of different volumes ranging from 5 to 11 mm3. Contact angles formed by drops of 70CB in the nematic and isotropic phases on plates of polystyrene (PS) and of a liquid crystal polymer (LCP), VECTRA A910, were also measured. Only large drops could be used for surface tension analysis. It was shown that in the nematic phase the surface tension of 70CB decreases with increasing temperature, and that in the isotropic phase the surface tension increases with increasing temperature. Using the values of contact angle and of surface tension of 7OCB it was possible to evaluate the interfacial energy between 7OCB and PS and between 7OCB and VECTRA. The interfacial energy between 7OCB and PS, and between 7OCB and VECTRA, decreased with increasing temperature for ranges of temperatures corresponding to both phases of 70CB.  相似文献   

7.
The surface-dependent anchoring and electro-optical (EO) dynamics of thin liquid crystalline films have been examined using Fourier transform infrared spectroscopy. A simple nematic liquid crystal, 4-n-pentyl-4'-cyanobiphenyl (5CB), is confined as 40, 50, and 390 nm thick films in nanocavities defined by gold interdigitated electrode arrays (IDEAs) patterned on polyimide-coated zinc selenide (ZnSe) substrates [Noble et al., J. Am. Chem. Soc. 124, 15020 (2002)]. New strategies for controlling the anchoring interactions and EO dynamics are explored based on coating a ZnSe surface with an organic polyimide layer in order to both planarize the substrate and induce a planar alignment of the liquid crystalline film. The polyimide layer can be further treated so as to induce a strong alignment of the nematic director along a direction parallel to the electrode digits of the IDEA. Step-scan time-resolved spectroscopy measurements were made to determine the rate constants for the electric-field-induced orientation and thermal relaxation of the 5CB films. In an alternate set of experiments, uncoated ZnSe substrates were polished unidirectionally to produce a grooved surface presenting nanometer-scale corrugations. The dynamical rate constants measured for several nanoscale film thicknesses and equilibrium organizations of the director in these planar alignments show marked sensitivities. The orientation rates are found to vary strongly with both the magnitude of the applied potential and the initial anisotropy of the alignment of the director within the IDEA. The relaxation rates do not vary in this same way. The marked variations seen in EO dynamics can be accounted for by a simple coarse-grained dynamical model.  相似文献   

8.
This work is a theoretical study of energy exchange between two coupled TE-wave modes on director diffraction grating in a planar waveguide containing a layer of nematic liquid crystal. The diffraction grating is produced by an external electric field in the nematic layer with spatial periodic anchoring energy between director and waveguide surface. The intensity of a signal mode at the output of the nematic layer has been calculated in dependence of anchoring energy amplitude and modulation period, the size of nematic layer and electrical field value. The cases of co-propagating and oppositely propagating modes have been analysed. The analytical expressions that describe the maximum values of signal mode intensity have been derived. The maximum intensity value output from the nematic has been shown to depend monotonously on the anchoring energy parameters in the case of oppositely propagating wave modes and non-monotonously in the case of co-propagating wave modes. In both cases, the maximum value of signal mode intensity grows with the increase in electric field.  相似文献   

9.
Abstract

The light scattering technique was used to investigate the viscoelastic parameters characterizing director twist distortions in miscible nematic mixtures of 5CB (pentacyanobiphenyl) with two side chain liquid crystal polymers and a main chain liquid crystal polymer. By applying an AC electric field to homeotropically-aligned nematic monodomains of the mixtures, the field-dependent scattering intensities and director orientation fluctuation relaxation rates yield, respectively, the twist elastic constant K 22 and viscosity coefficient γ1. The results directly demonstrate that the addition of liquid crystal polymers causes substantial decreases of the relaxation rates for dynamic light scattering from the twist mode and these changes are due to small decreases in K 22 coupled with large increases in γ1. The decrements in K 22 are comparable for both side chain and main chain liquid crystal polymers. The relative increase in the twist viscosity for the side chain liquid crystal polymers is much smaller than those of main chain polymers. A theoretical model is used to qualitatively interpret the difference between the viscous behaviour of the twist mode for both side chain and main chain liquid crystal polymers in a nematic solvent.  相似文献   

10.
Abstract

The spatial dependence of the orientation of the molecular director and of the nematic order parameter is obtained by minimization of the Landau–de Gennes free energy of the nematic liquid crystal confined in a spherical droplet. Special attention is given to the vicinity of the nematic–isotropic transition. The influence of the resulting nematic structure, large liquid crystal–polymer interface and restricted molecular diffusion on the nuclear magnetic relaxation is analysed. The translationally-induced molecular reorientation and the liquid crystal–polymer cross relaxation are discussed in particular. The possibility of an indirect study of the molecular anchoring on the polymer surface is demonstrated.  相似文献   

11.
《Liquid crystals》1999,26(3):427-436
Holographic gratings were recorded on photosensitive Langmuir-Blodgett films characterized by UV spectroscopy, birefringence measurements and atomic force microscopy. Different polarizations of Ar laser writing beams create particular patterns of chromophore orientation in the diffraction spots. The gratings were shown to orient a nematic liquid crystal with the director parallel to the axes of the chromophores predetermined by film irradiation. In the case of the sp grating (recorded with laser beams polarized perpendicular to each other), two equivalent easy directions for the liquid crystal orientations at 90degree with respect to each other were observed; that is a quasi-bistable anchoring interface had been prepared. Measurements of the pretilt angles theta1s and anchoring energy Ws of 5CB on different holographic gratings show that this orientation technique is very promising for display technology.  相似文献   

12.
Thin solid films of hydroxypropylcellulose (∼15-30 µm) prepared from liquid crystalline and isotropic aqueous solutions are used as liquid crystal alignment layers. Using the standard nematic liquid crystal 5CB we measured the interface properties of these solid films as a function of the polymer concentration in the aqueous precursor solution, expressed in terms of zenithal and azimuthal anchoring orientations and extrapolation lengths. The hydroxypropylcellulose thin films are found to induce a planar orientation of 5CB independently of the polymer concentration, with the alignment along the polymer backbone. The zenithal anchoring strength is found to be strong and essentially independent of the temperature far from the nematic-isotropic transition, with an extrapolation length ξθ≈50 nm. The zenithal anchoring becomes weaker near the nematic-isotropic transition, as expected. The azimuthal anchoring strength is found to be intermediately weak and strongly dependent on the polymer concentration, with an extrapolation length varying from ξθ≈250 nm to ξϕ≈500 nm. These films are particularly interesting since their surface topography and morphology may be tuned by varying a few parameters in the film preparation process, such as the polymer concentration in the aqueous solution.  相似文献   

13.
We have developed a method for determining the surface anchoring potential for nematics in contact with a substrate that provides director alignment. Our main result is that the surface torque and hence the anchoring potential may be determined from either dielectric or optical phase response of a nematic undergoing a Freedericksz transition. The method is based on the Frank-Oseen continuum theory, and makes no assumptions about the functional form of the potential. We have measured the surface anchoring potential of two types of substrate in contact with the nematic liquid crystal 4-n-pentyl-4′-cyanobiphenyl. The surfaces were ITO-coated float glass, coated either with obliquely evaporated SiO or a buffed polymer film. Comparison of the results obtained from capacitance and optical measurements provides an estimate of the goodness of the method.  相似文献   

14.
A laser photolysis study of ZnTPP (P) oriented in nematic and isotropic cyanohexylbiphenyl (6CB) as a function of added 1.4-benzoquinone (Q) is reported. In the absence of Q, enhancement of triplet absorption below the clearing point (nematic phase) is observed. It is attributed to the improved alignment of the optical transition in the ordered matrix and also to the increase in the intersystem crossing efficiency. T−S1. In the presence of Q in the nematic phase. An additional increase in triplet absorption is noticed. This result is interpreted in terms of a triplet radical pair [P+√…Q−√]T,RP formation which is facilitated by the ordering in the liquid crystal, thus providing an additional channel for triplet formation. The triplet PT in 6CB (nematic or isotropic) is quenched with a second-order rate of ≈108 M−1 s−1 as compared to 2 × 109 M−1 s−1 in toluene.  相似文献   

15.
The voltage-controlled twist (VCT) effect shows that a grating surface, with its particular anchoring properties, has the potential to become a new surface anchoring for liquid crystal devices. In order to describe these properties an equivalent anchoring energy is introduced. The alignment of a nematic liquid crystal (NLC) on such a grating originates from two mechanisms, so each produces a term in the equivalent anchoring energy. One is the interaction potential between NLC molecules and the molecules on the substrate surface, from which we derive the expression of the corresponding term. The other is the increased elastic strain energy, for which we adopt the result of Berreman. The equivalent anchoring energy obtained is a function of pitch λ and amplitude δ of the grating surface. Both the corresponding strength parameter and the easy direction are functions of λ and δ. The hybrid aligned nematic cell proposed by. Bryan-Brown et al. is studied by the use of our formula, and the distribution of the director, the saturation state and the saturation voltage are calculated in detail. The results are consistent with experimental data, especially the values of λ and δ. The VCT effect can therefore be explained.  相似文献   

16.
We have explored the change in alignment of a nematic liquid crystal, 4'-pentyl-4-cyanobiphenyl (5CB) with three types of photosensitive polyimide as the alignment layer by photoirradiation at 366 nm. The photosensitive polyimide alignment layer induced a reversible change in alignment of 5CB. It was observed that the 5CB molecules became aligned from homogeneous alignment to homeotropic on photoirradiation with a d.c. electric field as a bias, and reversed to the homogeneous state when photoirradiation was ceased. This result indicates that optical switching could be repeated by on and off switching of the excitation light at 366 nm. The optical switching of the nematic liquid crystal might be mainly due to a photophysical change in the polyimide surface which is affected by the chemical structures of the polyimides at the temperature at which 5CB exhibits a nematic phase. The optical switching of nematic liquid crystals with photosensitive polyimides as the alignment layer is a novel driving method for nematic liquid crystals.  相似文献   

17.
Functional director alignment layers are needed for high performance liquid crystal displays (LCDs). Reported herein is a novel polymer material for LC alignment, namely, perfluoropolyether (PFPE), which exhibits a weak surface anchoring energy for bend deformation and is amenable to simple fabrication of grooved surfaces by soft lithography, a surface topography desired for multistable LCDs. Liquid crystal optical cells fabricated using Langmuir-Blodgett films of PFPE (of variable thickness) exhibited weak surface anchoring energies on the order of 10(-5) Jm2 for the nematic liquid crystal 4-cyano-4'-pentyl-1,1'-biphenyl with no dependence on film thickness.  相似文献   

18.
We have studied the effects of a transverse electric field on director fluctuations in the nematic liquid crystal 5CB (4-n-pentyl-4′-cyanobiphenyl) in the bend Fréedericksz geometry. The sample was homeotropically aligned by surface treatment of the glass cell walls and an additional magnetic field was applied perpendicular to the walls. An electric field was then applied parallel to the walls; below the bend Fréedericksz transition, director fluctuations parallel to the electric field are enhanced. This field-induced biaxiality was observed and studied by monitoring the intensity of light transmitted by the sample placed between crossed polarizers. Landau theory for 5CB predicts the electric field induced bend transition to be first order. Our observations of the transmitted intensity are consistent with this prediction. We have also observed that this transition is to a modulated rather than to a uniform phase.  相似文献   

19.
《Liquid crystals》1998,25(4):495-504
The genetic algorithm (GA), written to allow automatic analysis of optical reflectivity data obtained from liquid crystal cells using the half-leaky guided mode technique, has been developed to the point where liquid crystal cells can be analysed successfully giving greater detail of optical parameters and director profile than yielded by any other technique. The technique models the liquid crystal layer as a set of discrete, independent sub-layers which can map out the variation of the director through the thickness of the cell. Given sufficient high quality data, it is now possible automatically and accurately to fit the parameters of a complete liquid crystal cell. Using this highly adapted GA, half-leaky guided mode optical reflectivity data from the nematic, smectic A and smectic C* phases of SCE13 in a surface stabilized ferroelectric liquid crystal have been fitted to reveal director profiles and optical parameters of the cell in each phase.  相似文献   

20.
Photosensitive surfaces treated to have in-plane structural anisotropy by illumination with polarized light can be used to orient liquid crystals (LCs). Here we report a detailed study of the dynamic behavior of this process at both short and long times, comparing the ordering induced in the bare active surface with that of the LC in contact with the surface using a high-sensitivity polarimeter that enables detailed characterization of the anisotropy of the active surface. The experiments were carried out using self-assembled monolayers (SAMs) made from dimethylaminoazobenzene covalently bonded to a glass surface through a triethoxysilane terminus. This surface gives planar alignment of the liquid crystal director with an azimuthal orientation that can be controlled by the polarization of actinic light. We find a remarkable long-term collective interaction between the orientationally ordered SAM and the director field of the LC: while an azobenzene based SAM in contact with an isotropic gas or liquid relaxes to an azimuthally isotropic state in the absence of light due to thermal fluctuations, an orientationally written SAM in contact with LC in the absence of light can maintain the LC director twist permanently, that is, the SAM is capable of providing azimuthal anchoring to the LC even in the presence of a torque about the surface normal. We find that the short-time, transient LC reorientation is limited by the weak azimuthal anchoring strength of the SAM and by the LC viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号