首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational sum frequency generation (SFG) spectroscopy was applied to study the phase transitions of the mixed monolayers of l-alpha-distearoyl phosphatidylethanolamine (DSPE) and DSPE covalently coupled with poly(ethylene oxide) at the amino head group (DSPE-EO(45), DSPE with 45 ethylene oxide monomers) at the air-water interface. The SFG spectra were measured for the mixed monolayers with the mole fractions of DSPE-EO(45) of 0, 1.3, 4.5, 9.0, 12.5, and 16.7% at the surface pressures of 5, 15, and 35 mN/m. The monolayer compression isotherms indicated that the mixed monolayers at 5, 15, are 35 mN/m are mainly in the so-called "pancake", "mushroom", and "brush" states, respectively. The SFG spectra in the OH stretching vibration region give rise to SFG bands near 3200 and 3400 cm(-1). The mean molecular amplitude of the former band due to the OH stretching of the "icelike" water molecules associated mainly with the hydrophilic poly(ethylene oxide) (PEO) chains, exhibits appreciable decrease on compression of the mixed monolayers from 5 to 15 mN/m. The result corroborates the model for the pancake-mushroom transition, which presumes the dissolution of the PEO chains from the air-water interface to the water subphase. Further compression of the mixed monolayers to 35 mN/m causes a slight decrease of the line amplitude, which can be explained by considering a squeezing out of water molecules from the hydrophilic groups of DSPE-EO(45) in the brush state, where the PEO chains strongly interact with each other to form a tight binding state of the hydrophilic groups. The relative intensities of the SFG bands due to the CH3 asymmetric and symmetric vibrations were used to estimate the tilt angles of the terminal methyl group of DSPE, indicating that the angle increases with increasing the mole fraction of DSPE-EO(45). The angles almost saturate at the mole fraction larger than 10%, the saturation angle being nearly 90 degrees at 5 mN/m, ca. 60 degrees at 15 mN/m, and ca. 47 degrees at 35 mN/ m. Then, the introduction of the hydrophilic PEO head group causes a large tilting of the alkyl groups of DEPE in the mixed monolayers.  相似文献   

2.
Time and frequency domain sum-frequency generation (SFG) were combined to study the dynamics and structure of self-assembled monolayers (SAMs) on a fused silica surface. SFG-free induction decay (SFG-FID) of octadecylsilane SAM in the CH stretching region shows a relatively long time scale oscillation that reveals that six vibrational modes are involved in the response of the system. Five of the modes have commonly been used for the fitting of SFG spectra in the CH stretching region, namely the symmetric stretch and Fermi resonance of the methyl group, the antisymmetric stretch of the methyl, as well as the symmetric and antisymmetric stretches of the methylene group. The assignment of the sixth mode to the terminal CH(2) group was confirmed by performing a density function theory calculation. The SFG-FID measures the vibrational dephasing time (T(2)) of each of the modes, including a specific CH(2) group within the SAM, the terminal CH(2), which had never been measured before. The relatively long (~1.3 ps) dephasing of the terminal CH(2) suggests that alkyl monolayer structure is close to that of the liquid condensed phase of Langmuir Blodgett films.  相似文献   

3.
Adsorption states of dioctyl dichalcogenides (dioctyl disulfide, dioctyl diselenide, and dioctyl ditelluride) arranged on Au(111) have been studied by X-ray photoelectron spectroscopy (XPS), infrared-visible sum-frequency generation (SFG), and ultraviolet photoelectron spectroscopy (UPS). XPS measurements suggest that dioctyl dichalcogenides dissociatively adsorbed on Au(111) surfaces to form the corresponding monolayers having chalcogen-gold covalent bonds. The elemental compositions of octanechalcogenolates on Au(111) indicate that the saturation coverages of the octyl heavy chalcogenolate (OcSe, OcTe) monolayers are lower than that of the octanethiolate (OcS) self-assembled monolayers (SAMs). The SFG observations of the CH(2) vibrational bands for the heavy chalcogenolate monolayers strongly suggest that a discernible amount of gauche conformation exists in the monolayers, while OcS SAMs adopt highly ordered all-trans conformation. The intensity ratio of the symmetric and asymmetric CH(3) stretching vibration modes measured by SFG shows that the average tilt angle of the methyl group of the OcSe monolayers is greater than that of the OcS SAMs. The larger tilt angle of the methyl group and the existence of a discernible amount of gauche conformation in the OcSe monolayers are due to the lower surface coverage of the OcSe monolayers compared with the OcS SAMs. The smaller polarization dependence in the angle-resolved UPS (ARUPS) spectra of the OcSe monolayers than that of the OcS SAMs is caused by the more disordered structures of the alkyl chain in the former. XPS, SFG, and ARUPS measurements indicate a similar tendency for the OcTe monolayers. The density of states (DOS) observed by UPS at around 1.3 eV for OcS adsorbed on Au(111) is considered to be the antibonding state of the Au-sulfur bond. Similar DOS is also observed by UPS at around 1.0 eV for the OcSe monolayers and at approximately 1.6 eV for the OcTe monolayers on Au(111).  相似文献   

4.
Vibrational spectra of methyl C-H stretching region are notoriously complicated, and thus a theoretical method of systematic assignment is strongly called for in condensed phase. Here we develop a unified analysis method of the vibrational spectra, such as infrared (IR), polarized and depolarized Raman, and ssp polarized sum frequency generation (SFG), by flexible and polarizable molecular dynamics simulation. The molecular model for methanol has been developed by charge response kernel model to allow for analyzing the methyl C-H stretching vibrations. The complicated spectral structure by the Fermi resonance has been unraveled by empirically shifting potential parameters, which provides clear information on the coupling mechanism. The analysis confirmed that for the IR, polarized Raman, and SFG spectra, two-band structure at about 2830 and 2950 cm(-1) results from the Fermi resonance splitting of the methyl C-H symmetric stretching and bending overtones. In the IR spectrum, the latter, higher-frequency band is overlapped with prominent asymmetric C-H stretching bands. In the depolarized Raman spectrum, the high frequency band at about 2980 cm(-1) is assigned to the asymmetric C-H stretching mode. In the SFG spectrum, the two bands of the splitted symmetric C-H stretching mode have negative amplitudes of imaginary nonlinear susceptibility χ(2), while the higher-frequency band is partly cancelled by positive imaginary components of asymmetric C-H stretching modes.  相似文献   

5.
The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.  相似文献   

6.
The influences of temperature on the SFG spectra of Langmuir-Blodgett films of cadmium stearate, ferric stearate, stearic acid and octadecanamide are reported. Upon cooling, all films display reversible discontinuous shifts of approximately 8 cm (-1) in the r+, r- and rfermi modes of the terminal methyl groups at approximately 150 K. Reversible changes in the relative intensities of these methyl group peaks, most pronounced in the PPP spectra, are also observed and attributed to a change in the environment of the methyl group that accompanies a discontinuous transition in the ordering of their alkyl chains. The onset of new spectral features at higher frequency is attributed to the observation of ordered water molecules contained within the films. The correlation between the onset of the water features and the onset of the reversible, discontinuous, spectroscopic changes of the amphiphiles argues for a causal connection between the two. In addition to the discontinuous behavior upon cooling, monolayer films of stearic acid and octadecanamide display activity of methylene modes upon exposure to vacuum. Films displaying SFG-active methylene groups at room temperature had them gradually become completely SFG-inactive by 100 K. Heating the films to room temperature revealed that the methylene group activity was reversible. Monolayer films of cadmium stearate and ferric stearate do not display this methylene activity upon exposure to vacuum, suggesting that this behavior may be linked to solvation of the amphiphile's headgroup. These observations suggest that water plays a key role in the stability and structure of LB supported monolayers, and have important implications to those interested in low temperature (cryogenic) effects of biological systems.  相似文献   

7.
Adsorption of methyl chloride and coadsorption of CH3Cl and D2O on Pd(111) surfaces at T=100 K have been studied under ultrahigh-vacuum conditions using femtosecond sum frequency generation (SFG) spectroscopy in the spectral regions of CH and OD bands. On the bare Pd(111) substrate, the CH3Cl coverage dependence of the resonant SFG signal is consistent with a progressive molecular rearrangement starting at half saturation followed by the growth of two ordered monolayers in which the molecular axes are perpendicular to the surface. When CH3Cl is adsorbed on top of predeposited D2O on Pd(111), the SFG signals as a function of the CH3Cl exposure indicate that methyl chloride is adsorbed onto D2O through hydrogen bonding. On the contrary when the adsorption order is reversed the strong decrease of the CH3 signal as a function of the D2O exposure is explained by assuming that water molecules penetrate inside the CH3Cl layers, leading to the formation of disordered CH3Cl clusters. In all cases a nonresonant contribution due to molecular adsorption is observed and it shows a dependence upon surface structure and coverage significantly different from that of the resonant vibrational bands.  相似文献   

8.
Infrared-visible sum frequency generation spectroscopy (SFG) has been used to study the interface between poly(vinyl-N-octadecylcarbamate-co-vinyl acetate) (Comb) and deuterated or hydrogenated polystyrene (dPS or hPS) films. Strong methyl symmetric and Fermi resonance bands associated with the alkyl side chains of the Comb polymer are observed in the SFG spectra. In addition, for Comb/hPS spectra, symmetric and asymmetric vibration modes of phenyl groups are observed. The presence of asymmetric modes indicates the phenyl rings are tilted with respect to the interface normal.  相似文献   

9.
Room-temperature photoacoustic (PA) spectra and jet-cooled action spectra of the first to third overtone regions of the ethyl C-H stretches in vapor phase 1-butyne, CH3CH2C[Triple Bond]C-H, were measured. Both the PA and action spectra exhibit a complex multiple peak structure being better resolved and more pronounced in the latter, due to inhomogeneous structure reduction. The observed manifolds were analyzed in terms of a simplified joint local-/normal-mode (LM/NM) model accounting for two types of C-H stretches (methyl and methylene) and for Fermi resonances between stretches and deformations. The retrieved parameters, used for calculation of the eigenstates, come from the best-fit parameters based on the diagonalization of the vibrational Hamiltonian in the LM/NM basis. The parameters were obtained by comparing the eigenvalues and the sum of the squares of the expansion coefficients of the eigenvectors of the C-H stretches of methyl and methylene to the action spectra peak positions and intensities, respectively. This approximate model vibrational Hamiltonian is proposed to explain most observed spectral features, corresponding to C-H stretch bands and to combinations of C-H stretches and deformations, indicating the importance of the Fermi resonance. The model was also applied to calculate the dynamics of the C-H stretching modes resulting from coupling with the deformations, implying rapid initial state decay on subpicosecond time scale. Decays of several picoseconds were found for complete transfer of probability from the initially prepared state of methylene and methyl to the counterpart LM states.  相似文献   

10.
An n-alkanethiol, octadecanethiol (ODT), monolayer was successfully prepared onto an oxide-free mild steel (MS) surface under cathodic polarization in a 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT. Cyclic voltammetry (CV) and electrochemical impedance (EIS) and sum frequency generation (SFG) spectroscopy were applied to study and characterize the adsorption of ODT at a MS surface. In 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT, CV of the MS electrode shows a dramatic decrease in charging current and a positive shift in oxidation potential when compared to a solution without ODT. The interfacial capacitance was obtained as 2.52 microF/cm(2) from the impedance data. An average chain tilt angle of 48 degrees for the ODT molecules was deduced from the comparison of the interfacial capacitances of the ODT/MS and ODT/Au monolayers. X-ray photoelectron spectroscopy confirmed the formation of the ODT monolayer on mild steel. The ppp SFG spectrum of the ODT-modified MS features three strong methyl vibrational modes at 2877, 2943, and 2967 cm(-1), indicating the formation of the oriented and densely packed ODT monolayer. However, the appearance of the two weak CH(2) groups' vibrational modes at 2850 and 2914 cm(-1) implies the presence of defects in the ODT monolayer. ODT/Au films were prepared to compare with the ODT/MS films. Orientation analysis of the air/solid interface suggests that the methyl group of ODT/Au films has a tilt angle of 30 degrees , while the methyl group of ODT/MS films has a tilt angle of 23 degrees . Water was found to have an impact on the shape of the SFG spectra of ODT/MS. This suggests that the solution penetrated through the defects to reach the MS surface.  相似文献   

11.
Sum-frequency spectroscopy has been used to investigate the behavior of self-assembled monolayers in a solid-solid contact. Various alkanethiol layers on gold were observed before, during, and after compression to 660 MPa against a sapphire counterface. Well-ordered layers that differ only in the length of their alkane tails (C(8) versus C(18)) behave similarly. In contrast, defective and partly melted monolayers are more sensitive to stress than are their well-ordered analogues, and they are more prone to irreversible changes. In all cases, the intensity of methyl C-H stretching modes decreases with applied pressure, indicating a loss of net orientational order among the terminal methyl groups. The magnitude of this effect in well-ordered layers can be compared with the theoretical sensitivity of the resonant sum-frequency signal to molecular orientation. On these grounds, an increased population of terminal gauche conformers is identified as the disordering mechanism under pressure.  相似文献   

12.
《Chemical physics letters》2003,367(3-4):376-381
Infrared–visible sum-frequency spectra of n-alkyl (CnH2n+1; n=10–13, 18) monolayers anchored on the Si(1 1 1) surface through a Si–C covalent bond were measured for the C–H stretch region. Spectral shapes exhibited azimuth-orientation dependence compatible with the C3v symmetry of the substrate, indicating that the monolayers were epitaxially constructed on the substrate. Three methyl bands dominated each spectrum, and two-weak methylene bands were identified. Two distinct intensity patterns of the methyl bands were observed depending on n. The observed spectra were interpreted with reference to reported molecular models of the monolayer that consist of alkyl chains with an all-trans head part and a twisted stem.  相似文献   

13.
Model monomeric and polymeric stationary phases were examined using sum-frequency spectroscopy and contact angle measurements in order to determine structural differences between the two stationary phases. Octadecyldimethylchlorosiloxane (ODMS) monolayers and ODMS/methyl siloxane (MS) mixed monolayers in contact with water and acetonitrile solvent were examined. The results showed that the alkyl chains in the ODMS and the ODMS/TMS monolayer are highly disordered and are weakly sensitive to the change in solvent environment. In order to determine whether the observed disorder in ODMS is due to steric effects of the silicon bonded methyl groups or the lack of crosslinking, "surface-bonded" ODS and "highly crosslinked" ODS were studied and compared with ODMS. Calculations using contact angle data on ODMS monolayers showed that water interacts 70% with methyl groups and 30% with methylene groups.  相似文献   

14.
The air/liquid interface of a room temperature ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTf), is investigated using infrared-visible sum frequency generation (SFG) spectroscopy. The SFG spectra clearly show low-frequency modes [CF 3-symmetric stretching (ss) mode and SO 3-symmetric stretching (ss) mode] of the OTf anion, demonstrating the existence of anions polar oriented at the interface. The amplitude of the CF 3-ss peak of the OTf anion has the opposite sign with respect to that of the SO 3-ss peak, indicating that OTf anions at the surface have polar ordering where the nonpolar CF 3 group points away from the bulk into the air, whereas the SO 3 group points toward the bulk liquid. The line width of the SFG peak from the submerged SO 3 group is appreciably narrower than that from IR absorption, suggesting the environment of the surface OTf anions is much more homogeneous than that of the bulk. The vibrational calculations also suggest that the anions and the cations form a more specific aggregated configuration at the surface as compared to the bulk.  相似文献   

15.
UV polymerization of self-assembled monolayers of a novel carbazolyl-diacetylene (CDS9) chemisorbed on silver films was demonstrated by surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) experiments. SPR tests performed during UV exposure permitted one to observe the growth of the absorption coefficient, associated with the formation of the polymeric backbone. The Raman spectra of polymerized monolayers exhibited the bands associated with the C=C stretching modes of the conjugated backbone, typical of the blue and red polymeric phases usually present in polydiacetylenes, with a clear predominance of the red form. Moreover, the strong surface enhancement of the Raman band corresponding to the aromatic C=C stretching modes suggested that carbazolyl groups arrange nearly perpendicularly to the metal surface. In contrast, the absence of a SERS signal in the region of conjugated C[triple bond]C bond stretchings confirmed a polymerization scheme with conjugated triple bonds nearly parallel to the plane of the metal.  相似文献   

16.
We have studied the orientation of the train segments of a poly(methyl methacrylate) (PMMA) adsorbed layer at the CCl4-sapphire interface using surface-sensitive IR-visible sum frequency generation (SFG) spectroscopy. The SFG spectra of PMMA chains adsorbed on sapphire indicate ordered ester methyl groups. In comparison, we did not observe any significant contributions from the backbone methylene and alpha methyl groups, suggesting that these groups are disordered. No change in the structure of the adsorbed layer is observed upon cooling the solvent below the theta temperature; this is consistent with the picture of flat adsorbed chains on the surface. Interestingly, the orientation of the ester methyl groups of a spin-coated PMMA film at the PMMA-sapphire interface is similar to that of the same groups in the chains adsorbed from solution.  相似文献   

17.
Raman spectroscopy is used to investigate the conformation and packing of isotactic crystalline α-phase polypropylene compared with lower-order β-phase isotactic polypropylene and to study the solution behavior of atactic polypropylene. The high-frequency region of the spectrum is analyzed in light of a normal-mode calculation that takes into account the methyl-group vibrations. This region is sensitive to both chain conformation and packing, and because of the high intensity of the methyl and methylene high-frequency stretching modes, it can be used to probe small changes in intermolecular or intramolecular order. Differences in the thermal behavior between the two solid isotactic polypropylene samples are explained interms of packing defects which exist in the β-phase form. In the solution study, we demonstrate that, for molecules in which bands sensitive to intermolecular interactions exist, as is the case of the methyl and methylene vibrations of polypropylene, spectroscopic techniques can be used to estimate the minimum overlap concentration.  相似文献   

18.
Sum frequency generation (SFG) vibrational spectra of cadmium arachidate multilayer films adsorbed on a substrate with high nonresonant susceptibility, i.e., gold, and on a low nonresonant susceptibility substrate, i.e., fused quartz, have been investigated in the C-H stretching region in air. The films were formed by Langmuir-Blodgett (LB) deposition and their spectra recorded using SFG spectrometers employing both 532-nm nanosecond and 800-nm femtosecond lasers, with counter-propagating and co-propagating beam geometries, respectively. Both kinds of substrate were rendered hydrophobic by coating them with per-deuterated octadecanethiol (gold) or per-deuterated cadmium arachidate (fused quartz) monolayers. Single per-protonated arachidate layers in otherwise per-deuterated 10-layer films were used to show that the SFG resonances arise only from the topmost and lowermost layers in a LB film comprised of an even number of per-protonated layers, although the SFG spectra from the two hydrophobic substrates are different from each other. The differences in the spectra from the same ten-layer per-protonated films deposited on the two types of hydrophobic substrate have been explained in terms of a simple model that accounts for resonant and nonresonant contributions.  相似文献   

19.
Semifluorinated self-assembled (FAS SA) films fabricated from trifunctional precursors are frequently used in myriad applications, yet an understanding of the effects of fabrication conditions, including deposition time, on adsorption mechanisms and molecular architectures is still being developed. In this work we prepared SA films based on the F(CF(2))(8)(CH(2))(2)SiCl(3) (FAS-17) precursor and characterized these films using a suite of surface analytical techniques. Contact angle, sum frequency generation (SFG) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ellipsometry results are consistent with the formation of disordered sub-monolayer structures at short deposition times, well-ordered monolayers at intermediate deposition times, and inhomogeneous multilayers at long deposition times. Correlation of SFG and XPS results demonstrates a change in FAS-17 chain orientation as the deposition time increases from 2 s to 5 min. Group theory-based calculations, SFG studies, and Fourier-transform infrared (FTIR) results also afford additional evidence in support of the assignment of the SFG signals at ~1345 and ~1370 cm(-1) to the asymmetric stretching mode of the semifluorinated silane chain's terminal CF(3) group rather than to its axial CF(2) stretches. To our knowledge, this is the first report of SFG studies on semifluoroalkyl silane self-assembled films in the C-F stretching frequency region.  相似文献   

20.
Ethylene carbonate(EC) liquid and its vapor-liquid interface were investigated using a combination of molecular dynamics(MD)simulation and vibrational IR, Raman and sum frequency generation(SFG)spectroscopies. The MD simulation was performed with a flexible and polarizable model of the EC molecule newly developed for the computation of vibrational spectra. The internal vibration of the model was described on the basis of the harmonic couplings of vibrational modes, including the anharmonicity and Fermi resonance coupling of C=O stretching. The polarizable model was represented by the charge response kernel(CRK),which is based on ab initio molecular orbital calculations and can be readily applied to other systems. The flexible and polarizable model can also accurately reproduce the structural and thermodynamic properties of EC liquid. Meanwhile, a comprehensive set of vibrational spectra of EC liquid, including the IR and Raman spectra of the bulk liquid as well as the SFG spectra of the liquid interface, were experimentally measured and reported. The set of experimental vibrational spectra provided valuable information for validating the model, and the MD simulation using the model comprehensively elucidates the observed vibrational IR, Raman, and SFG spectra of EC liquid. Further MD analysis of the interface region revealed that EC molecules tend to orientate themselves with the C=O bond parallel to the interface. The MD simulation explains the positive Im[χ~((2))](ssp) band of the C=O stretching region in the SFG spectrum in terms of the preferential orientation of EC molecules at the interface. This work also elucidates the distinct lineshapes of the C=O stretching band in the IR, Raman, and SFG spectra. The lineshapes of the C=O band are split by the Fermi resonance of the C=O fundamental and the overtone of skeletal stretching. The Fermi resonance of C=O stretching was fully analyzed using the empirical potential parameter shift analysis(EPSA) method. The apparently different lineshapes of the C=O stretching band in the IR, Raman, and SFG spectra were attributed to the frequency shift of the C=O fundamental in different solvation environments in the bulk liquid and at the interface. This work proposes a systematic procedure for investigating the interface structure and SFG spectra, including general modeling procedure based on ab initio calculations, validation of the model using available experimental data, and simultaneous analysis of molecular orientation and SFG spectra through MD trajectories. The proposed procedure provides microscopic information on the EC interface in this study, and can be further applied to investigate other interface systems, such as liquid-liquid and solid-liquid interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号