首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibrational absorption spectra and vibrational circular dichroism (VCD) spectra of both enantiomers of 4-X-[2.2]paracyclophanes (X = COOCD3, Cl, I) have been recorded for a few regions in the range of 900-12000 cm(-1). The analysis of the VCD spectra for the two IR regions, 900-1600 cm(-1) and 2800-3200 cm(-1), is conducted by comparing with DFT calculations of the corresponding spectra; the latter region reveals common motifs of vibrational modes for the three molecules for aliphatic CH stretching fundamentals, whereas in the mid-IR region, one is able to identify specific signatures arising from the substituent groups X. In the CH stretching region between 2900 and 2800 cm(-1), we identify and interpret a group of three IR VCD bands due to HCH bending overtone transitions in Fermi resonance with CH stretching fundamental transitions. The analysis of the NIR region between approximately 8000 and approximately 9000 cm(-1) for X = COOCD3 reveals important features of the aromatic CH stretching overtones that are of value since the aromatic CH stretching fundamentals are almost silent. The intensifying of such overtones is attributed to electrical anharmonicity terms, which are evaluated here by ab initio methods and compared with literature data.  相似文献   

2.
We present a method to calculate near-infrared (NIR) and NIR-vibrational circular dichroism (NIR-VCD) spectra up to the second CH-stretching overtone region in the local mode approximation. Atomic polar tensors and atomic axial tensors are first evaluated by DFT methodology for all CH stretching coordinates with systematic positive and negative displacements off-equilibrium and therefrom anharmonic dipole moment functions are constructed by polynomial interpolations. No adjustable parameters are employed up to this point. Rotational and dipole strengths are finally calculated by evaluating transition moments of Morse-type wave-functions. The method is applied to the case of Camphor and Camphorquinone, for which relevant differences in the vibrational circular dichroism (VCD) data are observed, which are predicted by our approach. Further steps are still to be made for a more complete treatment: the ab initio evaluation of mechanical anharmonicity and the introduction of mechanical and electrical coupling between local modes.  相似文献   

3.
Summary. A set of vibrational circular dichroism (VCD) spectra in the CH-stretching fundamental region for about twenty compounds belonging to the class of essential oils was empirically analyzed by the use of a sort of vibrational exciton mechanism, involving three centers. Through a general formula applicable to many coupled dipole oscillators, the rotational strengths of the previously identified vibrational excitons are evaluated. The results are then critically reviewed by the use of recent ab initio methodology, as applied to selected molecules of the original set. Further insight is gained by model calculations adding up the contribution of the coupling between electric dipole moments associated with normal mode behavior and that of the polarizability from polarizable groups. The former part is responsible for the excitonic behavior of the VCD spectra. For the same selected molecules we have also investigated whether some excitonic behavior is taking place in the second overtone region, and have concluded that this is not the case.  相似文献   

4.
We have recorded vapor-phase photoacoustic spectra of cyclopropane, ethylene oxide, and ethylene sulfide in the third, fourth, and fifth CH-stretching overtone regions. We have used a harmonically coupled anharmonic oscillator local mode model to facilitate analysis of the spectra. Fermi resonance between the CH-stretching and HCH-bending vibrations is essential to explain the observed wide and multistructured CH-stretching overtone bands. A number of weak combination bands can account for the remaining experimental features observed to the blue of the CH-stretching regions. We have reassigned the fundamental spectra of these three-membered rings.  相似文献   

5.
The hydrogen-bonded clusters of 2-fluoropyridine with water were studied experimentally in a supersonic free jet and analyzed with molecular orbital calculations. The IR spectra of 2-fluoropyridine-(H2O)(n) (n = 1 to 3) clusters were observed with a fluorescence detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The frequencies of OH stretching vibrations show that water molecules bond to the nitrogen atom of 2-fluoropyridine in the clusters. The hydrogen-bond formation between aromatic CH and O was evidenced in the 1:2 and 1:3 clusters from the experimental and calculated results. The overtone vibrations of the OH bending mode in hydrogen-bonded water molecules appear in the IR spectra, and these frequencies become higher with the increase of the number of water molecules in the clusters. The band structure of the IR spectra in the CH stretching region changes depending on the number of coordinating water molecules.  相似文献   

6.
We have recorded the vibrational absorption spectrum of 1,1,1,2-tetrafluoroethane (HFC-134a) in the fundamental and first five CH-stretching overtone regions with the use of Fourier transform infrared, dispersive long-path, intracavity laser photoacoustic, and cavity ringdown spectroscopies. We compare our measured total oscillator strengths in each region with intensities calculated using an anharmonic oscillator local mode model. We calculate intensities with 1D, 2D, and 3D Hamiltonians, including one or two CH stretches and two CH stretches with the HCH bending mode, respectively. The dipole moment function is calculated ab initio with self-consistent-field Hartree-Fock and density functional theories combined with double- and triple-zeta-quality basis sets. We find that the basis set choice affects the total intensity more than the choice of the Hamiltonian. We achieve agreement between the calculated and measured total intensities of approximately a factor of 2 or better for the fundamental and first five overtones.  相似文献   

7.
The room-temperature vibrational overtone spectra of the formic acid isotopomers HCOOH and DCOOH have been recorded in the third and fourth OH-stretching overtone regions with intracavity laser photoacoustic spectroscopy. Resonance coupling between the OH- and CH-stretching vibrations in HCOOH is clearly identified in the fourth overtone region. This is an example of strong coupling across bonds. In the third overtone region, no resonance is observed. Vibrational energies and intensities of the OH- and CH-stretching overtones and combination bands have been calculated with an anharmonic oscillator local mode model. The pure OH-stretching bright state carries almost all the intensity prior to resonance coupling.  相似文献   

8.
The vapor phase CH stretching vibrational overtone spectra of tert-butylbenzene and tert-butyl chloride are measured in the Delta upsilon(CH) = 2-7 region, while the spectrum of tert-butyl iodide is recorded in the Delta upsilon(CH) = 2-6 region. The overtone spectrum of tert-butylbenzene is too complex to make detailed spectral assignments. Local mode frequencies, omega, and anharmonicities, omegax, are obtained for tert-butyl chloride and tert-butyl iodide. The torsional dependencies of the local mode frequency, delta(omega), and anharmonicity, delta(omega)(x), are calculated for the tert-butyl halides. Nonbonded, through-space intramolecular interactions are observed in the blue-shifting of sterically hindered CH oscillators. Scaling factors are presented for relating ab initio calculated local mode parameters to experimental values for alkyl CH oscillators. Fermi resonances are observed between local mode states and local mode/normal mode combination states in tert-butyl chloride and tert-butyl iodide. Vibrational overtone transition intensities are calculated in the range Delta upsilon(CH) = 3-9 using the harmonically coupled anharmonic oscillator (HCAO) model and ab initio dipole moment functions. The resultant HCAO intensities are compared to experimental intensities at Delta upsilon(CH) = 3.  相似文献   

9.
The IR spectrum of cis-(CH(3))(2)Au(O,O'-acac) has been reassigned by comparing frequencies for cis-(CH(3))(2)Au(O,O'-acac) and cis-(CD(3))(2)Au(O,O'-acac), and by analysis of the DFT-calculated normal modes and their frequencies for the isolated molecules. The vibrational intensity in the C-H stretching region arises almost entirely from the cis-(CH(3))(2)Au fragment, while the methyl deformation intensity is largely of acetylacetonato ligand origin. A low frequency mode in the C-H stretching region is the first overtone of the delta(a)(CH(3)) mode of cis-(CH(3))(2)Au. The Au-C stretching modes are affected by deuteration of the cis-(CH(3))(2)Au fragment, while the Au-O stretching modes are not.  相似文献   

10.
Infrared absorption spectra of gaseous CH2Cl2 in the regions of 1200-12000 cm-1 were measured using a Bruker IFS 120HR Fourier transform spectrometer in conjunction with a multipass cell. 47 vibrational levels of overtone and combinational spectral lines of the CH stretching (v1, v6), bending (v2), and rocking(v8) modes were analyzed and assigned. Utilizing the normal mode model and considering the coupling among CH stretching, bending and rocking vibrations, values of the harmonic frequency ωi, the anharmonic constant xij, and the coefficients of Fermi and the Darling-Dennison resonances of v1, v6, v2 and v8 modes were also determined from experimental spectral data with nonlinear least-square fitting. These spectral constants reproduced the experimental levels very well. These results showed that Fermi resonance between CH stretching and rocking vibrations (ki88=-254.63 cm-1) is stronger than that between CH stretching and bending vibrations (k122 = 54.87 cm-1); and that Darling-Dennison resonances between CH stretching and bending vibrations (k1166=-215.28 cm-1) is also much stronger than that between CH bending and rocking vibrations (k2288=-5.72 cm-1).  相似文献   

11.
A curvilinear internal coordinate Hamiltonian is used to simulate the N-H stretching overtone spectra and the associated inversion splittings in aniline. A simple local mode type model is applied to the N-H stretching and H-N-H bending modes. Geometric algebra is employed to derive the kinetic energy operator for the large amplitude inversion motion. Electronic structure calculations at the Moller-Plesset second order perturbation theory and correlation consistent aug-cc-pVTZ basis set level are used to obtain model parameters, some of which have been optimized with the least-squares method using experimental vibrational term values as data. The observed N-H stretching overtone vibrational levels and the inversional tunneling splittings are well reproduced with our approach.  相似文献   

12.
Near-infrared (NIR) and IR spectra were measured for pyrrole in CCl(4), CHCl(3), and CH(2)Cl(2) to study solvent dependence of absorption intensities and wavenumbers of the fundamental and first overtone of NH stretching vibration. It was found that the wavenumbers of the NH fundamental and its first overtone decrease in the order of CCl(4), CHCl(3), and CH(2)Cl(2), which is the increasing order for of the dielectric constant of the solvents. Their absorption intensities increase in the same order, and the intensity increase is more significant for the fundamental than the overtone. These results for the solvent dependence of the wavenumbers and absorption intensities of NH stretching bands of pyrrole are quite different from those due to the formation of hydrogen bonds. Quantum chemical calculations of the wavenumbers and absorption intensities of NH stretching bands by using the 1D Schr?dinger equation based on the self-consistent reaction field (SCRF)/isodensity surface polarized continuum model (IPCM) suggest that the decreases in the wavenumbers of both the fundamental and the overtone of the NH stretching mode with the increase in the dielectric constant of the solvents arise from the anharmonicity of vibrational potential and their intensity increases come from the gradual increase in the slope of the dipole moment function.  相似文献   

13.
We report ab initio (SCF-MP2 and CI) calculations on the three-dimensional anharmonic potential and dipole functions of the coupled vibrational modes of the CH chromopore in CD2HF. Predictions of fundamental and overtone spectra are obtained from 3D solutions of the vibrational Schrödinger equation and are compared with experiment. The dominant Fermi and Darling-Dennison coupling constants in the effective Hamiltonian representation of experiment and theory agree well. Predicted overtone band strengths are satisfactory and very sensitive to the dipole function used.  相似文献   

14.
The electronic and infrared spectra of 2-fluoropyridine-methanol clusters were observed in a supersonic free jet. The structure of hydrogen-bonded clusters of 2-fluoropyridine with methanol was studied on the basis of the molecular orbital calculations. The IR spectra of 2-fluoropyridine-(CH3OH)n(n = 1-3) clusters were observed with a fluorescence-detected infrared depletion (FDIR) technique in the OH and CH stretching vibrational regions. The structures of the clusters are similar to those observed for 2-fluoropyridine-(H2O)n (n = 1-3) clusters. The existence of weak hydrogen bond interaction through aromatic hydrogen was observed in the IR spectra. The theoretical calculation also supports the result. The vibrational frequencies of CH bonds in CH3 group are affected by hydrogen bond formation although these bonds do not directly relate to the hydrogen bond interaction. The B3LYP/6-311 ++G(d,p) calculations reproduce well the vibrational frequency of the hydrogen-bonded OH stretching vibrations. However, the calculated frequency of CH stretching vibration could not reproduce the IR spectra because of anharmonic interaction with closely lying overtone or combination bands for nu3 and nu9 vibrations. The vibrational shift of nu2 vibration is reproduced well with molecular orbital calculations. The calculation also shows that the frequency shift of nu2 vibration is closely related to the CH bond length at the trans position against the OH bond in hydrogen-bonded methanol.  相似文献   

15.
Vapor phase OH-stretching overtone spectra of ethylene glycol were recorded to investigate weak intramolecular hydrogen bonding. The spectra were recorded with conventional absorption spectroscopy and laser photoacoustic spectroscopy in the first to fourth OH-stretching overtone regions. The room-temperature spectra are dominated by two conformers that show weak intramolecular hydrogen bonding. A less abundant third conformer, with no sign of hydrogen bonding, is also observed. Vapor phase spectra of the ethylene-d(4) glycol isotopomer were also recorded and used to identify an interfering resonance between CH-stretching and OH-stretching states in the fourth overtone. Anharmonic oscillator local mode calculations of the OH-stretching transitions have provided an accurate simulation of the observed spectra. The local mode parameters were calculated with coupled cluster ab initio methods. The calculations facilitate assignment of the different conformers in the spectra and illustrate the effect of the intramolecular hydrogen bonding.  相似文献   

16.
The vibrational circular dichroism (VCD) spectra of (S)-(+)-2-butanol have been observed in dilute CS(2) solutions. Two strong VCD bands are assigned mainly to the OH bending modes with the aid of quantum chemical calculations. The calculated VCD spectra corresponding to these bands are shown to depend on the conformation of the OH group. To understand this feature, we have calculated the contribution of each local vibrational mode to the rotational strengths and concluded that the coupling of the group vibrations between the in-plane and out-of-plane modes about the locally assumed symmetry planes play a significant role in VCD. This finding has provided a new scope of VCD in relation to molecular vibrations.  相似文献   

17.
Infrared spectra of mass-selected Cl- -C2H4 and Br- -C2H4 complexes are recorded in the vicinity of the ethylene CH stretching vibrations (2700-3300 cm(-1) using vibrational predissociation spectroscopy. Spectra of both complexes exhibit 6 prominent peaks in the CH stretch region. Comparison with calculated frequencies reveal that the 4 higher frequency bands are associated with CH stretching modes of the C2H4 subunit, while the 2 weaker bands are assigned as overtone or combinations bands gaining intensity through interaction with the CH stretches. Ab initio calculations at the MP2/aug-cc-pVDZ level suggest that C2H4 preferentially forms a single linear H-bond with Cl- and Br- although a planar bifurcated configuration lies only slightly higher in energy (by 110 and 16 cm(-1), respectively). One-dimensional potential energy curves describing the in-plane intermolecular bending motion are developed which are used to determine the corresponding vibrational energies and wavefunctions. Experimental and theoretical results suggest that in their ground vibrational state the Cl- -C2H4 and Br- -C2H4 complexes are localized in the single H-bonded configuration, but that with the addition of modest amounts of internal energy, the in-plane bending wavefunction also has significant amplitude in the bifurcated structure.  相似文献   

18.
We have simulated the HOONO vibrational overtone spectrum with use of a local mode Hamiltonian that includes the OH-stretching, OOH-bending, and NOOH-torsional modes and coupling between all three modes. The local mode parameters and the dipole moment function are calculated with coupled-cluster ab initio theory and an augmented Dunning-type triple-zeta basis set. We investigate the accuracy of the local mode parameters obtained from two different potential-energy fitting routines, as well as the sensitivity of these parameters to the basis set employed. We compare our simulated spectra to previously published action spectra in the first and second OH-stretching overtone regions. In addition we have recorded the spectrum in the OH-stretch and OOH-bend combination region around 7700 cm-1 and we also compare to this. Our simulated spectrum is in qualitative agreement with experiment in the first and second OH-stretching overtone and in the stretch-bend regions.  相似文献   

19.
First-principle modeling is used to obtain a comprehensive understanding of infrared reflection absorption (RA) spectra of helical oligo(ethylene glycol) (OEG) containing self-assembled monolayers (SAMs). Highly ordered SAMs of methyl-terminated 1-thiaoligo(ethylene glycols) [HS(CH2CH2O)(n)CH3, n = 5, 6] on gold recently became accessible for systematic infrared analyses [Vanderah et al., Langmuir, 2003, 19, 3752]. We utilized the quoted experimental data to validate the first-principle modeling of infrared RA spectra of HS(CH2CH2O)(5,6)CH3 obtained by (i) DFT methods with gradient corrections (using different basis sets, including 6-311++G) and (ii) HF method followed by a M?ller-Plesset (MP2) correlation energy correction. In focus are fundamental modes in the fingerprint and CH-stretching regions. The frequencies and relative intensities in the calculated spectra for a single molecule are unambiguously identified with the bands observed in the experimental RA spectra of the corresponding SAMs. In addition to confirming our earlier assignment of the dominating peak in the CH-stretching region to CH2 asymmetric stretching vibrations, all other spectral features observed in that region have received an interpretation consistent (but not in all cases coinciding) with previous investigations. The obtained results provide an improved understanding of the orientation and conformation of the molecular building blocks within OEG-containing assemblies, which, in our opinion, is crucial for being able to predict the folding and phase characteristics and interaction of OEG-SAMs with water and proteins.  相似文献   

20.
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号