首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique for simultaneous determination of both fringe order and principal direction of birefringence in practical photoviscoelastic analysis using white incident light with a set of the primary colors, called tricolor photoviscoelasticity, is described. This method can determine both the fringe order and principal direction of birefringence from a single-color photoviscoelastic image under plane polarization. Then, the authors evaluate time dependent stresses and strains around a contact region in a viscoelastic strip plate under nonproportional loading condition. The variations of the principal stresses and strains are easily obtained over a wide time range by use of the optical constitutive equations of photoviscoelasticity and the characteristic material property functions.  相似文献   

2.
This paper reports on a procedure for photoviscoelastic analysis where the axes of principal stress, principal strain and polarization of light coincide in the presence of a large temperature change. More specially, the transient-thermal stress and strain due to stress in an epoxy beam subjected to quenching from both the upper and lower surfaces, are determined using the time-temperature-equivalent law for stress, strain and birefringence. The transient-thermal stress and strain in the beam were determined experimentally using hereditary integrations from the measurement of the transient temperature and birefringence due to the quenching of the beam. The transient thermal stress and strain were also calculated theoretically using the linear-viscoelastic theory. The experimentally determined thermal stress agrees closely with the theoretical results. The experimentally determined strain agrees qualitatively with the theoretical values. Thus, it is concluded that the photoviscoelastic technique is useful in analyzing the proposed problem.Paper was presented at 1982 SESA/JSME Spring Meeting held in Maui and Oahu, HI on May 23–28, 1982.  相似文献   

3.
A previous paper12 has described the optical calibration of photoviscoelastic materials on a microsecond time scale. In this paper, attention is given to the experimental determination of the two-dimensional plane-stress field in a body subjected to arbitrary loads. Symmetry of load and geometry is not assumed. Since the stress state depends on the history of fringe order and isoclinic angle, these basic data must be recorded. Due to nonlinearity in the material studied, the photoviscoelastic data were limited to fractional fringe orders. This introduced problems of initial birefringence and polariscope imperfections. Techniques are described which correct for these imperfections and allow for acquiring and analyzing the basic photoviscoelastic data.  相似文献   

4.
Certain laws of similarity must be observed in structural-model analyses. In this paper, one aspect of model similarity—that of linearity—is examined quite extensively. Most model analyses assume that both prototype and model materials obey Hooke's law. But the plastics often used for structural or photoelastic models are viscoelastic or photoviscoelastic. The stress-strain and stress-birefringence relations are time dependent and may be nonlinear. Through careful calibration of model materials and proper design of model tests, potential errors due to the time dependence of material properties can usually be avoided. If the results of the test are to be interpreted conveniently and accurately, the stresses in the model material must be within the linear range. This range is limited and time dependent for most plastics. The linear range may extend only to stresses considerably below the ultimate or fracture strength of the material. Hence, analyses based don linearity may be in error if the initial stresses are too high and/or if given stresses are sustained too long before desired information is collected. The stresses which limit the linear range, called linear limit stresses, were determined for both stress-strain and stress-birefringence relations for four commonly used plastics: CR-39 (Cast Optics Co.), PS-1 and PS-2 (Photolastic, Inc.) and P6-K (B.A.S.F., Germany). A graphical presentation of the time-dependent photoelastic and mechanical properties is employed. It was concluded that linear limit stresses for birefringence are approximately equal to those based on strain and can therefore be used to establish, within reasonable bounds of accuracy, the linear range of behavior of the material.  相似文献   

5.
In this paper, the frictionless rolling contact problem between a rigid sphere and a viscoelastic half-space containing one elastic inhomogeneity is solved. The problem is equivalent to the frictionless sliding of a spherical tip over a viscoelastic body. The inhomogeneity may be of spherical or ellipsoidal shape, the later being of any orientation relatively to the contact surface. The model presented here is three dimensional and based on semi-analytical methods. In order to take into account the viscoelastic aspect of the problem, contact equations are discretized in the spatial and temporal dimensions. The frictionless rolling of the sphere, assumed rigid here for the sake of simplicity, is taken into account by translating the subsurface viscoelastic fields related to the contact problem. Eshelby's formalism is applied at each step of the temporal discretization to account for the effect of the inhomogeneity on the contact pressure distribution, subsurface stresses, rolling friction and the resulting torque. A Conjugate Gradient Method and the Fast Fourier Transforms are used to reduce the computation cost. The model is validated by a finite element model of a rigid sphere rolling upon a homogeneous vciscoelastic half-space, as well as through comparison with reference solutions from the literature. A parametric analysis of the effect of elastic properties and geometrical features of the inhomogeneity is performed. Transient and steady-state solutions are obtained. Numerical results about the contact pressure distribution, the deformed surface geometry, the apparent friction coefficient as well as subsurface stresses are presented, with or without heterogeneous inclusion.  相似文献   

6.
The theoretical foundation of the photoelastic methods being presently used for measuring and analyzing residual stresses in glass is insufficient for studying development of transient viscoelastic stress states in glass plates during tempering process and for an explanation of the actual material behavior. It is shown that the basic knowledge of photoviscoelastic effect in glass over a wide range of electromagnetic radiation and temperature is necessary for such on analysis. Some photoelastic properties of plate glass are presented.  相似文献   

7.
Dynamic photoviscoelastic analysis requires the time and temperature dependency of the material to be taken into account. Mechanical relaxation processes have generally been incorporated in dynamic analysis, but there has been no widespread application of optical relaxation or creep functions over the complete time spectrum in photomechanics of birefringent polymers. Using material characterizations previously developed, this study compares a theoretical viscoelastic solution and its predicted fringe patterns for stress-wave propagation in a thin rod of polyurethane material (Solithane 113) with the photoviscoelastic data from a similar experimental arrangement. The agreement demonstrates both the validity and general necessity of such an approach for the time-domain characteristic of wave-propagation phenomena in low-modulus polymers.  相似文献   

8.
An epoxy resin containing excessive plasticizer was developed and characterized. The material, which deforms viscously at room temperature, has optical properties that depend on stress and strain. A tensile specimen was prepared from the epoxy resin so that the mechanical and optical properties of the epoxy resin could be characterized. The elastic and plastic behavior was determined at 37°C using tensile stresses between 4 and 26 MPa. The birefringence was also recorded as a function of time and stress. From these results, a photoviscoelastic constitutive equation was constructed to describe the dependence of the birefringence on stress and strain. The constitutive equation was then applied to study the deformation of a tensile specimen containing a central circular hole. By using the isochromatic fringes in combination with the isoclinic, the time-dependent variation of the stress field in the specimen was solved.  相似文献   

9.
The stress-optical coefficient functions of two optical-grade polycarbonates (PCs) have been obtained by simultaneous measurements of the relaxation modulus and strain-optical coefficient functions. Nonlinear behavior of the relaxation modulus and strain-optical coefficient was observed at small strains at room temperature. Comparison of these functions in the linear region with those of a commercial grade PC was made. These functions have been incorporated to linear viscoelastic and photoviscoelastic constitutive equations to calculate residual thermal birefringence in freely quenched PC plates. The numerical results have been compared with the measurements indicating a fair agreement between them.  相似文献   

10.
聚合物注射成型流动残余应力的数值分析   总被引:6,自引:0,他引:6  
建立了可压缩黏弹性聚合物熔体在薄壁型腔中充模/保压过程中非等温、非稳态流动 的数学模型,用数值方法实现了注射成型过程中流动应力和取向建立及松弛过程的模拟,研 究了熔体温度、模具温度和注射速率等工艺条件对分子冻结取向的影响,取得了与实验相符 的结果.  相似文献   

11.
Extensive experimental data on the birefringence in converging and diverging flows of a polymeric melt have been obtained. The birefringence and pressure drop measurements were carried out in working cells of planar geometry having different contraction angles and contraction ratios. For investigation of diverging or abrupt expansion flow, the direction of flow in the cells was reversed. The theoretical predictions are based upon the Leonov constitutive equation and a finite element scheme with streamwise integration.In contrast to Newtonian and second-order fluids, viscoelastic fluids at high shear rates show significant differences in pressure drop and birefringence (i.e. stresses) in converging and diverging flows. For a constant flow rate, the pressure drop is higher and the birefringence smaller in diverging flows than in converging flows. This difference increases with increasing flow rate. Further, for the same contraction ratio but different contraction angles, the birefringence maximum increases considerably with contraction angle. In addition, an increase in contraction ratio has the same effect.The viscoelastic constitutive equation of Leonov has been shown to describe all the above viscoelastic effects observed in the experiments. In general, a reasonable agreement between theory and experiment has been obtained, which shows the usefulness of the Leonov model in describing actual flows.  相似文献   

12.
Mitigation of residual stress in an arc weld by high-pressure rolling of the weld seam has been investigated using neutron diffraction. Rolling was found to greatly improve the residual stress distribution, causing significant compressive stresses at the weld line. A novel aspect of the data presented is that at each measurement location, normal strains in nine separate directions were evaluated, enabling calculation of the complete strain and stress tensors. It is thus confirmed that the principal stress directions generally lay close to the specimen coordinate axes (i.e. that they are well-aligned with the direction of welding and rolling), and that rolling does not cause any significant additional residual stresses which could have detrimental effects. Methods of uncertainty estimation and the applications of full-tensor residual stress measurements are also discussed.  相似文献   

13.
This paper presents a simplified optical method for measuring the residual stresses by rapid cooling in thermosetting resin strips. First, the fundamental equations for calculating the residual stress from the residual birefringence were obtained by the linear photoviscoelastic theory. The specimens were then subjected to rapid cooling. After rapid cooling, the residual stress was measured by two methods, the simplified optical method mentioned above and the well-known layer-removal method. The effectiveness of the simplified optical method was discussed by comparing results of the two methods.  相似文献   

14.
We present a novel three-dimensional boundary-element formulation that fully characterizes the mechanical behavior of the external boundary of a multi-layered viscoelastic coating attached to a hard rotating spherical core. The proposed formulation incorporates both, the viscoelastic, and the inertial effects of the steady-state rolling motion of the sphere, including the Coriolis effect. The proposed formulation is based on Fourier-domain expressions of all mechanical governing equations. It relates two-dimensional Fourier series expansions of surface displacements and stresses, which results in the formation of a compliance matrix for the outer boundary of the deformable coating, discretized into nodes. The computational cost of building such a compliance matrix is optimized, based on configurational similarities and symmetry. The proposed formulation is applied, in combination with a rolling contact solving strategy, to evaluate the viscoelastic rolling friction of a coated sphere on a rigid plane. Steady-state results generated by the proposed model are verified by comparison to those obtained from running dynamic simulations on a three-dimensional finite element model, beyond the transient. A detailed application example includes a verification of convergence and illustrates the dependence of rolling resistance on the applied load, the thickness of the coating, and the rolling velocity.  相似文献   

15.
An attempt is made in dynamic photoelasticity to get the principal directions and principal stresses of a time-dependent two-dimensional state by three simultaneous photoelectric signals. The signals are obtained from birefringence and interference of light in the model itself. The described procedure is possible because a laser was used instead of a conventional light source. It applies essentially to the general case where the principal directions vary as a function of time during a transient state of stress and, probably, it may also be used for certain three-dimensional tests. A comparison with theoretical values in an example has proved a rather good accuracy.  相似文献   

16.
The stress-strain behavior and corresponding birefringence of several polymers have been investigated within a limited range of temperatures (from ?65 to 70°F) and strain rates (from 0.0027 to 0.1613 sec?1). One of these materials, a polyethylene resin, has been studied in more detail to ascertain the existence of a simple relationship between stress history, temperature, strain rate and birefringence. When the results were compared with the photoviscoelastic relations developed by E. H. Dill for a simple rheological material, it was concluded that the polyethylene tested does not completely satisfy this model. Polyethylene as well as the other materials investigated—nylon, a polyester, cellulose acetate butyrate, cellulose nitrate—exhibits a linear relation between birefringence and strain, independent of rate within the limits of the present experimental range.  相似文献   

17.
Some principles ans laws, expressing the mechanical and optical behavior of linear viscoelastic materials, are reviewed. The mechanical properties of the polymers in the transition region may be represented by a condensed general method containing Ferry's modulus or compliance-reduction scheme, the time-temperature superposition principle and the Gauss error integral representation. The optical behavior of high polymers is expressed by the stress- and strain-optical coefficients in creep or relaxation, which relate birefringence to stresses or strains. It was recently shown experimentally that, instead of a pair of independent linear differential operator relations, which characterize the mechanical properties of the viscoelastic materials, only one operator relation is needed and the initial value of another at the glassy or rubbery state. Then, a single test is sufficient for the complete determination of the mechanical and optical viscoelastic behavior, provided the value of another elastic constant at the glassy or rubbery state is also determined and the variation of birefringence with time is simultaneously measured with the mechanical-characteristic quantities of the material.  相似文献   

18.
This paper reports some experimental results on the time development of a Couette flow following the start-up of shear flow using the technique of two-color flow birefringence. Measurements obtained on collagen solutions are consistent with two theoretical studies which predict that for some viscoelastic liquids, momentum is transferred from the moving Couette cell boundary to the interior of the fluid through a velocity wave propagating and reflecting between the cell boundaries. This non-Newtonian phenomenon, exhibited as an oscillatory response in the measured birefringence and orientation angle, is observed at shear rates above a critical value when the response time of the polymer solution approaches the flow development time in the Couette flow cell.  相似文献   

19.
A comparative evaluation of existing rate-type constitutive equations is provided for a viscoelastic fluid undergoing accelerated flow. To this end, accurate point velocity and stress birefringence data previously obtained by laser Doppler anemometry and stress birefringence are utilized. For each constitutive equation, the numerical values of constants which yield the best fit with experimental data are determined via non-linear regression analysis. The best agreement between experimental and calculated normal stress differences is obtained with the White-Metzner equation. The success of this equation is attributed to the deformation rate dependence of its viscosity and time constant.  相似文献   

20.
The method of photoviscoelastic stress analysis is used to predict time-dependent stress redistributions in a polyphase-material system having a viscoelastic binder and subjected to applied exteernal-loading conditions. The polyphase-material model studied is composed of a photoviscoelastic matrix material and contains rigid inclusions and voids, thus simulating a threephase composite system. In order to perform the study, a photoviscoelastic model material is developed. An epoxy-resin system consisting primarily of Shell Epon 828 and Epon 871, optimized to display the properties desirable for such application, is utilized. The time-dependent stess distributions obtained by the photoviscoelastic analysis are compared with results obtained by applying the “correspondence rule” to a finite-element solution for the elastic stress field of a mathematical model of the three-phase material system. The comparison of results indicates that the technique of photoviscoelastic stress analysis is extremely applicable to complex models such as the one studied. The feasibility of this application to more complex polyphase models with varying loading conditions is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号