首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
马宁  魏浩 《高分子科学》2017,35(5):649-658
Hydrogen bonding is considered to have significant effect on the interaction between polymeric chains and on the viscoelasticity of the polymeric materials. In this paper, we attempt to discuss the relationship between hydrogen bonding density and damping behavior and mechanical properties of polyethylene-based polymeric materials. For this reason, a series of pendant chain hydrogen bonding polymers(PCHBP) with different hydrogen bonding density(HBD) were prepared by quantitatively changing the content of pendent hydroxyl groups on the main chain of polyethylene. It was found that PCHBP with low HBD showed similar properties to polyethylene, indicating that the property of the materials was dependent mainly on the structure of the main chain. However, PCHBP with high HBD exhibited two tanδ peaks and a platform of loss modulus as well as a high storage modulus(about 400 MPa) at the second tanδ peak temperature, demonstrating that a polymeric material with high strength and damping properties was obtained. More importantly, the maximum of loss modulus showed a linear increase with the HBD, indicating that a higher HBD greatly improved the damping properties of the polymeric materials.  相似文献   

2.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   

3.
The thermal conductivity and the cellular structure as well as the matrix polymer morphology of a collection of chemically crosslinked low‐density closed cell polyolefin foams, manufactured by a high‐pressure nitrogen gas solution process, have been studied. With the aid of a useful theoretical model, the relative contribution of each heat‐transfer mechanism (conduction through the gas and solid phases and thermal radiation) has been evaluated. The thermal radiation can be calculated by using a theoretical model, which takes into account the dependence of this heat‐transfer mechanism with cell size, foam thickness, chemical composition, and matrix polymer morphology. A simple equation, which can be used to predict the thermal conductivity of a given material, is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 993–1004, 2000  相似文献   

4.
We report the development of highly chemically crosslinked, ultra low density (~0.015 g/cc) polyurethane shape memory foams synthesized from symmetrical, low molecular weight, and branched hydroxyl monomers. Sharp single glass transitions (Tg) customizable in the functional range of 45–70 °C were achieved. Thermomechanical testing confirmed shape memory behavior with 97–98% shape recovery over repeated cycles, a glassy storage modulus of 200–300 kPa, and recovery stresses of 5–15 kPa. Shape holding tests under constrained storage above the Tg showed stable shape memory. A high volume expansion of up to 70 times was seen on actuation of these foams from a fully compressed state. Low in vitro cell activation induced by the foam compared with controls demonstrates low acute bio‐reactivity. We believe these porous polymeric scaffolds constitute an important class of novel smart biomaterials with multiple potential applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
We demonstrated a simple and effective dual-templating approach for the synthesis of hierarchically mesocellular carbon foams by using nonionic surfactant of sorbitan monooleate and silica colloid particles as sacrificial templates, and resorcinol/ formaldehyde as carbon source. The representative carbon foam has dual mesopore sizes of 4 and 10 nm, and possesses the specific surface area of 580 m2/g and the total pore volume of 0.80 cm3/g.  相似文献   

6.
In this paper, polymer foams based on a benzoxazine resin have been successfully prepared using azodicarbonamide (ADC) as a chemical blowing agent and have been characterized regarding their foaming behavior, cellular structure, and physical properties. The effect of the ADC on the curing process of the resin was analyzed using differential scanning calorimetry and blowing agent decomposition was followed by thermogravitmetric analysis (TGA). The characterization of the cellular structure of the foamed samples was done using scanning electron microscopy. The mechanical properties of the foams were determined using compression tests and the thermal conductivity was assessed using the transient plane source method. The results indicated that the curing process and gas release took place in a similar time interval. The foams showed an isotropic cellular structure with relative densities in the range 0.35–0.60, and showed compressive strengths and compressive moduli in the range of 10–70 MPa and 400–1100 MPa, respectively. Thermal conductivities were in the range of 0.06–0.12 W m?1K?1. The findings in this paper demonstrate the possibility of producing polybenzoxazine foams using a simple process in which curing and foaming take place simultaneously. In addition, the mechanical characterization of these materials indicates that they are suitable for structural applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The thermooxidative and thermal stability of polyether- and polyester-type polyurethane foams were investigated by non-isothermal chemiluminescence (CL), differential scanning calorimetry (DSC) and thermogravimetry (TG). In the presence of air and humidity, the effect of various routes and conditions of polyurethane ageing (induced thermally or by light) on the chemiluminescence, DSC and thermogravimetry patterns was assessed. The rate constants determined from non-isothermal thermogravimetry and chemiluminescence measurements at 250 °C and their not very pronounced dependence on the atmosphere of degradation indicated that depolymerisation of the polyurethane containing the aliphatic polyester and aromatic polyisocyanate moieties preceded or occurred in parallel with thermal oxidation. Under conditions of 50% relative humidity, samples of the polyester-type polyurethane, aged either by light or thermally, as well as specimens of the polyether-type polyurethane, aged by light, gave increased amounts of carbonaceous residue when heated in nitrogen to 550 °C.  相似文献   

8.
Sulfur emission in coal power generation is a matter of great environmental concern. Limestone sorbents are widely used for reducing such emissions. This work applies thermogravimetry to determine apparent activation energy and frequency factor on the sorption of SO2 by limestone. The kinetic parameters were determined from Arrhenius plots generated from TG/DTG measurements. The experiments were carried out under isothermal conditions between 600 and 900 °C. A natural dolomite with a mean size of 650 μm was used. The Arrhenius plot shows that there is a clear change on reaction mechanism in the range of temperatures between 800 and 875 °C. Supposedly, beyond 850 °C sintering comes to increasingly restrain reaction. For temperatures up to 850 °C the frequency factor and the apparent activation energy resulted, respectively, 1.410 s−1 and 8.8 kJ mol−1.  相似文献   

9.
The effect of cross-link density on the morphology and properties of two flexible molded foam samples was studied. Film samples based on the same foam formulations were also fabricated to study the feasibility of using them for the characterization of complex foam products. Fourier transform infrared spectroscopy (FTIR) and small angle X-ray scattering (SAXS) data show that films and foam samples have entirely different hard domain ordering. The results of the study of morphology indicate that an increase in cross-link density appears to increases phase mixing in film and foam samples. Differential scanning calorimetry (DSC) studies indicate that the soft segment glass transition temperature (Tg) is independent of cross-link density (at levels studied). But for both film and foam samples, morphology clearly dicates the manner in which moisture interacts with the hard domains. Results of the stress-strain behavior indicate that an increase in cross-link density increases the modulus and decreases the elongation at break. Mooney-Rivilin modeling of the stress-elongation behavior of film shows that the higher cross-link density sample gives more nonaffine behavior, possibly due to a heterogeneous distribution of hard domains. Similar modeling of the foams was not possible because of their linear stress response to surprisingly high elongation. The results of the power law modeling of stress relaxation response indicates that with an increase in cross-link density (covalent and virtual), the power law exponent decreases as expected. At levels of cross-linking and hard segment content studied, stroke-controlled equilibrium hysteresis was independent of cross-link density. Normalized dynamic mechanical spectra (DMS) show that the film samples have higher rubbery plateau modulus. The magnitude of the area under the tan δ curve at Tg indicates greater flexibility of polymer segments in foam sample. Structure-property relationships of cellular materials can be established by characterizing film samples because a parallel trend exists between each group. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The thermal decompositions of both non-activated and mechanically activated alunite ore have been studied by thermogravimetry (TG). The ore was activated mechanically in an attritor for 15 min and amorphisation in the structure was studied by X-ray diffraction analysis. It can be verified that alunite decomposes in two steps, which are dehydration and desulphation. It was also established that the mechanical activation affected especially on the temperature range of dehydration reaction. The activation energies of dehydration and desulphation reactions have been calculated from the thermogravimetric data at heating rates of 5, 10, 15 and 20 K min−1 involving isoconversional methods of Ozawa and Kissenger-Akahira-Sunose (KAS).  相似文献   

11.
High-resolution differential scanning calorimetry was used to accurately establish the temperature intervals of oxidation/distillation of the major components of crude oils. Some theoretical aspects of the method of dynamic microdistillation, enabling consecutive distillation (oxidation) of the main components of hydrocarbon mixtures, are discussed. The experimental TG-DSC curves show that the temperature scan of the run can be divided into six regions, of which the first belongs to simple distillation of the sample's liquid constituent (the distillate) and the others to oxidative cracking distillation of the solid (heavy) residue. The latter occur in the order paraffins + light oils, middle base oils, heavy base oils, condensed aromatics (resins) and asphaltenes. The probable oxidation mechanisms of different classes of petroleum hydrocarbons operating in different temperature regions are discussed. Full quantitative fractional and group component analysis of a number of crude oils of different chemical classes and geological age was carried out by the combined TG-DSC techniques under specially chosen experimental conditions (those of dynamic microdistillation).  相似文献   

12.
The thermal conductivity at constant pressure of a collection of crosslinked, closed‐cell polyethylene foams were measured at room temperature with the transient plane source (TPS) method. The experimental results were compared with those determined by a standard steady‐state technique. The results showed that the values measured by the TPS method follow the same trends as those measured by a heat‐flow meter. Therefore, with the TPS technique it is possible to observe the influence of structural characteristics such as cell size, black carbon content in foams, density, and so forth on thermal conductivity. However, the values obtained by the transient method were approximately 20% higher than those given by the standard method. Possible reasons for these variations are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1226–1234, 2004  相似文献   

13.
Cellular polymers, such as polyethylene foams, are commonly used in the packaging industry. These materials have short service life and generate a high volume of waste after use. In order to valorize this waste and produce added-value applications, it is proposed to convert these materials into highly efficient energy absorption structures. This was done by modifying the original cellular morphology of the foams (spheroidal or polygonal) into a re-entrant structure to produce auxetic materials. This work presents an optimized process combining mechanical compression and solvent vapor evaporation-condensation leading to low density foams (77–200 kg/m3) having negative Poisson's ratios (NPR). Three series of recycled low density polyethylene (LDPE) foams with an initial density of 16, 21, and 36 kg/m3 were used to optimize the processing conditions in terms of treatment temperature, time, and pressure. From all the samples prepared, a minimum Poisson's ratio of −3.5 was obtained. To further characterize the samples, the final foam structure was analyzed to relate with mechanical properties and compare with conventional foams having positive Poisson's ratios. The results are discussed using tensile properties and energy dissipation which were shown to be highly improved for auxetic foams. Overall, the resulting foams can be used in several applications such as sport and military protection equipment.  相似文献   

14.
The validity of two approaches widely used to determine the radiant thermal conductivity in plastic foams is discussed. While one approach is based on the solution of a geometric model, the other is derived from the experimental determination of the extinction coefficient. A comparison to recently reported experimental data shows that the geometric approach predicts values that are in good agreement. In contrast, values deduced from measurements of the mean extinction coefficient significantly underestimate the radiant thermal conductivity, an effect that can be traced to the way that the extinction coefficient is measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 190–192, 2005  相似文献   

15.
We found that novel nanoporous structures such as ellipsoidal‐ or string‐shaped nanopores were formed on the surface of the spherical bubbles in polycarbonate foams by annealing CO2‐saturated polycarbonate. The pores were surrounded by polycarbonate nanofibrils, and birefringence with spherical symmetry was seen on the surface of the spherical bubbles. Thus, the formation of such a characteristic structure might be attributed to orientation‐induced crystallization of CO2‐saturated polycarbonate on the surface of the bubbles and the exclusion of CO2 from the fibrillar crystals thus obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 843–846, 2008  相似文献   

16.
We herein presented a mesoporous cellular foam solid‐phase microextraction coating that showed highly sensitive recognition for weakly polarity polychlorinated biphenyls in water samples. The mesoporous cellular foam coater fiber was for the first time prepared by a simple sol‐gel method. The main experimental parameters including extraction temperature, extraction time, desorption time, stirring rate, and ionic strength were investigated by high‐efficiency orthogonal array design, a L16 (44) matrix was applied for the identification of optimized extraction parameters, and the optimized method was successfully applied to the analysis of environmental water sample. The novel mesoporous cellular foam coated fibers exhibited sensitive limits of detection (0.07–0.28 µg/L), wide linearity (5–3000 µg/L), and good reproducibility (3.5–8.3% for single fiber, and 4.9–8.7% for fiber‐to‐fiber) for polychlorinated biphenyls. The home‐made coating was successfully used in the analysis of polychlorinated biphenyls in real environmental water samples. These results indicate that the synthesized mesoporous cellular foams are promising materials for adsorption and separation applications in sample pretreatment.  相似文献   

17.
Monolithic poly(lactic acid) (PLA) foams were produced by thermally induced phase separation. PLA solutions with concentrations 8–22 wt % were prepared in tetrahydrofuran/methanol (THF/MeOH) solvent/nonsolvent mixtures at 55 °C. Homogenous solutions were quenched at ?20 °C to induce phase separation and gelation. Resulting gels were mechanically stabilized by solvent exchange. Subsequent supercritical CO2 drying yielded monolithic PLA foams. Crystal structure and degree of crystallinity of the foams were obtained by x‐ray diffractometry and differential scanning calorimetry. Morphologies were determined by scanning electron microscopy. Tuning the PLA concentration and THF/MeOH ratio enabled preparation of monolithic PLA foams. Depending on the experimental conditions various morphologies, such as: interconnected networks, thin platelets, lamellar stacks, axialites, and spherulites were formed. Monoliths obtained were highly crystalline. By changing the PLA concentration monoliths with controlled average pore sizes (170–1440 nm) and porosities (80–90%) were produced. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 98–108  相似文献   

18.
Polylactide nanocomposites with multi-walled carbon nanotubes (PLA/MWCNT) in the form of porous foams made of a biocompatible, biodegradable and environmentally friendly polymer with a small amount of carbon nanotubes, were investigated in this work. Additionally, PLA/MWCNT porous nanocomposites were coated with MWCNTs using the electrophoretic deposition method (EPD). All samples were characterized by a porosity of about 90%, showing pore sizes in the range of 100 to 200 μm, for PLA/MWCNT foam, however, EPD deposition resulted in an decrease in the number of smaller pores in PLA/MWCNT + MWCNT (EPD) foam. The porous polymer (PLA) matrix, shows almost twofold increase in crystallinity while depth penetrating the volume of the sample. The crystallinity, of the PLA/MWCNT foam, at first is growing then it gradually lowers, while for the PLA/MWCNT + MWCNT(EPD) foam almost does not change. This behavior points toward significant distinction between surface and interior of the samples. A detailed analysis of Raman spectra indicates related carbon structures occurring in the nanomaterial foams: graphene and graphite phases, CNT and also carbon amorphous phases. The characteristics of a single-shell vibration are visible by the character of the G-band. The estimated crystallite size in PLA/MWCNT + MWCNT(EPD) is about 3 times smaller than that in the PLA/MWCNT.  相似文献   

19.
Two types of commercial low density polypropylene based flexible foams produced by extrusion foaming were characterized in terms of their fracture behaviour using the concept of the Essential Work of Fracture (EWF), focusing on the influence of the foam’s relative density and cellular structure on the values of the fracture parameters. With that in mind, correction procedures based on the expansion ratio of the foams and their cellular structure were proposed, with the objective of taking the complexity of these materials into account in the obtained fracture parameters. Significant differences were found between the fracture parameters of the two foams related to differences in their cellular structure, particularly cell size, cell aspect ratio and preferential cell orientation. Generally speaking, the specific fracture elastic contribution in the two considered extrusion directions increased with increase of the cell aspect ratio, especially in the case of the foams with a marked cell orientation in the direction of the extrusion flow. In any case, the fracture parameters for all foams were considerably lower in the direction perpendicular to the extrusion flow, hence demonstrating the highly anisotropic fracture behaviour of these foams due to the anisotropic cellular structure induced during foaming.  相似文献   

20.
Laccase was immobilized on mesostructured cellular foam (MCF), a kind of mesoporous silica with large pore size by adsorption–cross linking method. The effects of immobilization time, temperature, pH, amount of enzyme and content of glutaraldehyde on the immobilization were optimized. The activities and stabilities towards pH and temperature of the immobilized enzyme were studied, and significantly improved enzymatic properties and good operational stability were obtained for the immobilized laccase. Dye decolorization tests showed that the immobilized enzyme could decolorize Alizarin Red and Indigo Blue solution fast and efficiently in the presence of ABTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号