首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanostructured NASICON-type LiTi2(PO4)3 (LTP) material has been synthesized by Pechini-type polymerizable complex method. The use of water-soluble ammonium citratoperoxotitanate (IV) metal complex instead of alkoxides as precursor allows to prepare monophase material. Thermal analyses have been carried out on the powder precursor to check the weight loss and synthesis temperature. X-ray powder diffraction analysis (XRD) has been performed on the LTP powder obtained after heating the powder precursor over a temperature range from 550 to 1050 °C for 2 h. By varying the molar ratio of citric acid to metal ion (CA/Ti) and citric acid to ethylene glycol (CA/EG), the grain size of the LTP powder could be modified. The formation of small and well-crystalline grains, in the order of 50-125 nm in size, has been determined from the XRD patterns and confirmed by transmission electron microscopy.  相似文献   

2.
A thieno[2,3-b]thiophene core has been utilized as a π-donor component to design two series of push-pull thienothiophenes by introducing various acceptor groups either via olefinic or aza-spacers. The molecules show a UV-visible cut-off wavelength below the second harmonic generation (SHG) at λ/2 of 532 nm, thereby conforming to the nonlinearity-transparency trade-off. Second order molecular nonlinearity, β measured by Hyper-Rayleigh scattering technique was found in the range of 9.58-47.66×10−30 esu, while the Kurtz powder technique produced signals of the order of 0.43-1.02 U. Thermal decomposition temperatures measured by differential scanning calorimetry revealed decomposition temperatures≥275 °C, indicating high thermal stability.  相似文献   

3.
We have used silicon micromachining techniques to fabricate devices for measuring specific heat or other calorimetric signals from microgram-quantity samples over a temperature range from 1.7 to at least 525 K in magnetic fields to date up to 8 T. The devices are based on a robust silicon-nitride membrane with thin film heaters and thermometers. Different types of thermometers are used for different purposes and in different temperature ranges. These devices are particularly useful for thin film samples (typically 100-400 nm thick at present) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small bulk samples attached by conducting grease, Ga or In, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high field measurements because the thermal conductance can be measured once in zero field and is field independent, while the time constant of the relaxation does not depend on thermometer calibration.  相似文献   

4.
The present study reports on a novel barium acetato-propionate complex, obtained by the reaction of barium acetate with propionic acid, used as an oxide precursor with applications in superconducting thin films deposition. The molecular structure has been determined by X-ray diffraction on single crystals and demonstrated to be [Ba7(CH3CH2COO)10(CH3COO)4·5H2O]. The barium acetato-propionate is a three-dimensional channel-type polymer. The thermal decomposition of the barium precursor has been studied by simultaneous differential thermal analysis-thermogravimetry-mass spectrometry (DTA-TG-MS) in air at a heating rate of 10 °C/min. Based on these analyses, infrared spectroscopy was further used to characterize the precursor solution by the step-wise addition of the reagents. The X-ray diffraction on the precursor powder at different temperatures was performed.  相似文献   

5.
A technique of measurement of thermal conductivity of solid materials by differential scanning calorimetry is presented. It concerns small samples having a diameter less than 8.0 mm, a height less than 2.0 mm and a low thermal conductivity. This method requires many samples with different heights which are heated in such a way that a calibration substance put on their top undergoes a first-order phase transition. The analysis of heat transfer of a such experiment predicts that the slope of the differential power during the transition is proportional to the factor 2 and inversely proportional to the sum of the thermal resistances. A measurement of the thermal conductivity of samples made of polytetrafluoroethylene powder, compressed at the density of 2.10±0.03 g cm−3, has been performed; the value obtained is 0.33±0.02 W m−1 K−1. Measurements of thermal conductivity of small metal hydride pellets are also presented. The precision of the measurements are on average 10%.  相似文献   

6.
In this work the thermal decomposition characteristics of micron sized aluminum powder + potassium perchlorate pyrotechnic systems were studied with thermal analytical techniques. The results show that the reactivity of aluminum powder in air increases as the particle size decreases. Pure aluminum with 5 μm particle size has a fusion temperature about 647 °C, but this temperature for 18 μm powder is 660 °C. Pure potassium perchlorate has an endothermic peak at 300 °C corresponding to a rhombic-cubic transition, a fusion temperature around 590 °C and decomposes at 592 °C. DTA curves for Al5/KClO4 (30:70) mixture show a maximum peak temperature for thermal decomposition at 400 °C. Increasing the particle size of aluminum powder increases the ignition temperature of the mixture. The oxidation temperature increased by enhance in the aluminum content of the mixture.  相似文献   

7.
Previous reports of the thermal behaviour of antimony trioxide show significant disagreement on the values for the temperatures associated with specific thermal events. In this reappraisal, samples of both polymorphs of Sb2O3 (senarmontite and valentinite) have been analysed using X-ray diffraction and simultaneous differential thermal/thermogravimetric analysis techniques. The senarmontite-valentinite phase transition has been observed to occur as a multi-stage event commencing at temperatures as low as 615±3 °C—evidence of oxidation to Sb2O4 under inert atmosphere may indicate that the depression is related to surface- or bulk-bound water. Valentinite produced by mechanical milling of senarmontite exhibits the reverse phase transition to senarmontite at a lower than normal temperature (445±3 °C). Oxidation temperatures of 531±4 °C for senarmontite and 410±3 °C for mechanically derived valentinite were also recorded.  相似文献   

8.
The thermal conductivity of ammonia borane (AB) complex, in the temperature range of 300-420 K, was measured experimentally using ASTM method E 1225. At 300 K, the thermal conductivity of pure AB was found to be approximately 15 W/m-K. A composite pellet prepared by mixing 10 wt% aluminum powder with AB had a thermal conductivity that was a factor of 4 higher than that of pure AB complex. The extent of the pyrolytic weight loss for AB/Al composite and pure AB complex was 25.4% and 33.9%, respectively—indicating comparatively lower levels of volatile species evolved as impurities (e.g. monomeric aminoborane, borazine, diborane, etc.) in the product hydrogen.  相似文献   

9.
This work details the fabrication and performance of a sensor for ammonia gas analysis which has been constructed via the inkjet-printed deposition of polyaniline nanoparticle films. The conducting films were assembled on interdigitated electrode arrays and characterised with respect to their layer thickness and thermal properties. The sensor was further combined with heater foils for operation at a range of temperatures. When operated in a conductimetric mode, the sensor was shown to exhibit temperature-dependent analytical performance to ammonia detection. At room temperature, the sensor responded rapidly to ammonia (t50 = 15 s). Sensor recovery time, response linearity and sensitivity were all significantly improved by operating the sensor at temperatures up to 80 °C. The sensor was found to have a stable logarithmic response to ammonia in the range of interest (1-100 ppm). The sensor was also insensitive to moisture in the range from 35 to 98% relative humidity. The response of the sensor to a range of common potential interferents was also studied.  相似文献   

10.
The present study reports the preparation and characterization of PbO nanocrystals obtained via a thermal decomposition route. The PbO nanocrystals were synthesized using lead oxalate powder as a precursor. Nanostructured products were investigated by means of XRD, TEM, FT-IR and XPS. The XRD results indicate that tetragonal phase β-PbO with a particle size of about 30–45 nm was obtained when the intermediate precipitate was calcined at 500 °C.  相似文献   

11.
The thermal degradation of polyetherimides joined by friction riveting (FricRiveting) (Amancio Filho ST, Beyer M, Dos Santos JF. Verfahren zum Verbinden eines metallischen Bolzens mit einem Kunststoff-Werkstück - DE 10 2005 056 606 A1. Germany: Deutsches Patent- und Markenamt; 2007) has been investigated for varying rotation speeds. The rotation speed is an important variable to be understood in order to predict thermal degradation during this process. Investigated rotation speeds in the range of 1570-2199 rad/s resulted in high process temperatures (350-475 °C) and heating rates (up to 2 °C/100 rad/s), but only small heating times (<3 s). Thermal degradation was evaluated by gel permeation chromatography, Fourier transform infrared spectroscopy and X-ray computer microtomography. The results indicated that thermal degradation in the PEI polymer was mainly due to chain scission. Moreover, the small level of thermally degraded material (average drops of 10% in molecular weight) showed only a minor dependence on rotation speed. Although high peak temperatures and heating rates were present, the restricted variation and average values of heating time were insufficient to cause strong thermal changes in the joints of the studied rotation speed range.  相似文献   

12.
The ageing of filled and cross-linked ethylene propylene diene elastomer (EPDM) has been studied under accelerated UV irradiation (λ ≥ 290 nm) at 60 °C, thermal ageing at 100 °C and in nitric acid vapours for different time intervals. Hardness measurements were performed. DSC-thermoporosimetry was used to estimate the mesh size distribution and cross-linking densities for each ageing. The development of functional groups was monitored by ATR spectroscopy. An increase in oxidation with exposure time after the different types of ageing was observed. The thermal stability of EPDM was assessed by TGA and evolved volatile gases were identified using FTIR spectroscopy.  相似文献   

13.
The thermo-oxidative degradation of an epoxy resin obtained by curing of an industrially produced DGEBA mixture with 4,4′-methylene-dianiline (MDA) and used as electric insulator has been investigated by TG + DTG + DSC simultaneous analyses performed in static air atmosphere, at five heating rates. TG, DTG and DSC curves showed that, in the temperature range 25-900 °C, a glass transition followed by three thermo-oxidative processes occur. The processing of the non-isothermal data corresponding to the first process of thermo-oxidation was performed by using Netzsch Thermokinetics - A Software Module for Kinetic Analysis. The dependence of the activation energy, evaluated by isoconversional methods, on the conversion degree and the relative high standard deviations of this quantity show that the investigated process is a complex one. The mechanism and the corresponding kinetic parameters were determined by multivariate non-linear regression program and checked for quasi-isothermal data. It was pointed out that the first process of thermo-oxidation of the investigated resin consists in four steps, each step having a specific kinetic triplet. The obtained results were used for prediction of the thermal lifetime of the material corresponding to some temperatures of use and the end point criterion 5% and 10% mass loss.  相似文献   

14.
The thermal decomposition of the complex K4[Ni(NO2)6]·H2O has been investigated over the temperature range 25-600 °C by a combination of infrared spectroscopy, powder X-ray diffraction, FAB-mass spectrometry and elemental analysis. The first stage of reaction is loss of water and isomerisation of one of the coordinated nitro groups to form the complex K4[Ni(NO2)4(ONO)]·NO2. At temperatures around 200 °C the remaining nitro groups within the complex isomerise to the chelating nitrite form and this process acts as a precursor to the loss of NO2 gas at temperatures above 270 °C. The product, which is stable up to 600 °C, is the complex K4[Ni(ONO)4]·NO2, where the nickel atom is formally in the +1 oxidation state.  相似文献   

15.
We have prepared electrodeposited boron wafer by molten salts with KBF4-KF at 680°C using graphite crucible for anode and silicon wafer and nickel plate for cathodes. Experiments were performed by various molar ratios KBF4/KF and current densities. Amorphous p-type boron wafers with purity 87% was deposited on nickel plate for 1 h. Thermal diffusivity by ring-flash method and heat capacity by DSC method produced thermal conductivity showing amorphous behavior in the entire temperature range. The systematical results on thermoelectric properties were obtained for the wafers prepared with KBF4-KF (66-34 mol%) under various current densities in the range 1-2 A/cm2. The temperature dependencies of electrical conductivity showed thermal activated type with activation energy of 0.5 eV. Thermoelectric power tended to increase with increasing temperature up to high temperatures with high values of (1-10) mV/K. Thermoelectric figure-of-merit was 10−4/K at high temperatures. Estimated efficiency of thermoelectric energy conversion would be calculated to be 4-5%.  相似文献   

16.
Reaction steps and mechanisms of the thermal dehydration of lithium metaborate dihydrate were investigated by means of thermoanalytical measurements, high temperature powder X-ray diffractometry, FT-IR spectroscopy, and microscopic observations. The first half of thermal dehydration was characterized by the melting of the sample producing viscous surface layer, the formation of bubbles on the particle surfaces, and the sudden mass-loss taking place by an opportunity of cracking and/or bursting of the bubble surface layer. The second half of the dehydration with a long-tailed mass-loss process in a wide temperature region was divided further into three distinguished reaction steps by the measurements of controlled rate thermal analysis. During the course of the thermal dehydration, four different poorly crystalline phases of intermediate hydrates were observed, in addition to an amorphous phase produced by an isothermal annealing. Just after completing the thermal dehydration, an exothermic DTA peak of the crystallization of β-LiBO2 was appeared at around 750 K. The phase transition from β-LiBO2 to α-LiBO2 was observed in the temperature range of 800-900 K, which subsequently melted by indicating a sharp endothermic DTA peak with the onset temperature at 1101.4 ± 0.6 K.  相似文献   

17.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

18.
A new approach, employing cloud point extraction (CPE) in combination with thermal lens spectrometry (TLS), has been developed for the determination of cobalt. The CPE and TLS methods have good matching conditions for combination because TLS is suitable for low volume samples obtained after CPE and for organic solvents, which are used for dissolving the remaining analyte phase.1-(2-Pyridylazo)-2-naphthol (PAN) was used as a complexing agent and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant; then the pH of solution was adjusted. After phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into the quartz micro cell and the analyte was determined by thermal lens spectrometry. The He-Ne laser (632.8 nm) was used as both the probe and the excite source.Under optimum conditions, the analytical curve was linear for the concentration range of 0.2-40 ng mL−1 and the detection limit was 0.03 ng mL−1. The enhancement factor of 470 was achieved for a 10 mL sample. Relative standard deviations were lower than 5%.The method was successfully applied to the extraction and determination of cobalt in tap, river and sea water.  相似文献   

19.
The present investigation reports the novel synthesis of copper nanocrystals using thermal reduction, and their physicochemical characterization. The copper nanocrystal powder has been prepared using [bis(2-hydroxyacetophenato)copper(II)] as a precursor. The effect of oleylamine and triphenylphosphine on the particle morphology has been investigated. Transmission electron microscopy (TEM) analysis has demonstrated that the copper nanocrystals have an average diameter of about 3 nm. The as-prepared copper nanocrystals were characterized by XRD, SEM, TEM, EDX, UV–Vis and FTIR.  相似文献   

20.
The thermal degradation behavior of crystalline cellulose has been investigated using thermogravimetry, differential thermal analysis, and derivative thermogravimetry in a nitrogen atmosphere. Three cellulose samples, Halocynthia, cotton, and commercial microcrystalline cellulose Funacel, were used in this study to analyze the influence on crystallite size. They all belongs to cellulose Iβ type and those crystallite sizes calculated from the X-ray diffractometry profiles by Scherrer equation were very different in the order Halocynthia > cotton > Funacel. The thermal decomposition of cellulose shifted to higher temperatures with increasing crystallite size. However, activation energies for the thermal degradation were the almost the same among the samples: 159-166 kJ mol−1. These results indicated that the crystal structure does not affect the activation energy of the thermal degradation but the crystallite size affects the thermal degradation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号