首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The thermal addition of CF3O3CF3(T) to CF2CCl2(E) has been investigated between 49.6 and 69.5°C. The initial pressure of CF3O3CF3 was varied between 7 and 240 torr and that of CF2CCl2 between 4 and 600 torr. Four products of formula CF3O(E)j OOCF3, where j = 1 → 4 are formed. The sum of the products Σ CF3O(E)jOOCF3 is equal to the amount of trioxide decomposed. The reaction is homogeneous. Its rate is not affected by the total pressure and the presence of inert gas. It is a free radical telomerization with four basic steps: thermal decomposition of CF3O3CF3 into CF3O. and CF3O2., chain initiation by addition of CF3O. to olefin incorporated in, and telomeric radicals termination. The consumption of alkene is well represented by the equation: where (d[E]/d[T]) = is the mean chain length of telomerization. varies from 1.45 at 1.5 torr of E to 3.3 at 400 torr of E. Above this pressure E has no influence on . The estimated value of the constant for the addition of telomeric radicals to alkene is:   相似文献   

2.
The gas phase photolysis of CF3CCl3 in the presence of several alkanes has been used to obtain Arrhenius parameters for the abstraction of hydrogen atoms by the CF3CCl2 radical: Activation energies of 9.6 and 8.0 kcal/mole are found for abstraction from secondary and tertiary C–H bonds, respectively. The Arrhenius parameters are compared to those for CCl3 and CF3 radicals.  相似文献   

3.
The reactions have been studied competitively in the vapor phase over the range of 52–204°C. The i-C3F7 radicals were generated by means of the reaction It was found that where θ = 2.303RT J/mol. Absolute Arrhenius parameters are derived for the reactions where R = CF3, C2F5, and i-C3F7.  相似文献   

4.
The pyrolysis of 2,2-dichloro-1,1,1-trifluoroethane was studied over the temperature range of 1120–1260°K at total reflected shock pressures from ~2800 to 3100 torr. Below 1260°K, the decomposition leads to three reaction products which were identified as CF2CFCl, CF2CFH, and CF3CCl3. The results are interpreted in terms of a parallel C? Cl bond rupture process which becomes competitive with the molecular HCI elimination. The rate constant for the α,α-elimination process has been deduced to be It was also possible to obtain the overall rate constant for the formation of CF2CFH, which is given by Some evidence for hydrogen fluoride elimination was found at temperatures above 1260°K. However, at these higher temperatures C? C bond scission also occurs and the kinetics of the system become untractable.  相似文献   

5.
Hydrogen abstraction from boron trimethyl has been studied using the abstracting radicals CF3 and CD3, from the photolysis of the corresponding ketones over the temperature range of 150° to 300°C. The following Arrhenius parameters were obtained: The difference EE in the case of BMe3 is considered due, in part, to polar effects. An exchange reaction is proposed for both CF3 and CD3 in collisions with BMe3: Radical combination of CF3 and CH2BMe2 leads to a hot molecule which undergoes a β-fluoro rearrangement elimination process, or a stabilized molecule which can thermally decompose:   相似文献   

6.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

7.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

8.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

9.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

10.
Hydrogen abstration from H2S by CF3 radicals, generated by the photolysis of both CF3COCF3 and CF3I, has been studied in the temperature range 314–434 K. The rate constant, based on the value of 1013.36 cm3/mol · s for the recombination of CF3 radicals, is given by with CF3COCF3 as the radical source, and with CF3I as the radical source, where k2 is in cm3/mol · s and E is in J/mol. These results resolve a previously existing controversy concerning the values of the rate constants for this reaction. They show that CF3 radicals are less reactive than CH3 radicals in attacking H2S, and this behavior indicates that polar effects play a significant role in the hydrogen transfer reactions of CF3 radicals.  相似文献   

11.
The kinetics of the radiation-induced free radical chain reactions in solutions of CCl3CClH2 and CCl2BrCH2Cl in cyclohexane (RH) were studied in the temperature range of 90–225°C. 1,1,2 trichloroethyl and 1,1,1,2 tetrachloroethyl radicals were produced by the reaction of radiolytically generated cyclohexyl (R) radicals with solutes. The reactions studied were The following rate expressins were obtained: where θ = 2.303RT in kcal/mole. From the activation parameters of the k4/k5 rate constant ratio and the assumption that E4 = E, E5 was calculated to be 20.2 ± 0.2 kcal/mole. The Arrhenius parameters for the Cl atom elimination reaction from chloroethyl radicals derived from liquid and gas-phase studies are compared.  相似文献   

12.
Arrhenius parameters have been measured for the abstraction of hydrogen from the C Si, Ge, and Sn tetramethyls: The rate constants correlate with the proton chemical shift, which is related to a polar effect. In all cases except carbon, a hot-molecule β-fluorine rearrangement-elimination reaction occurs following radical combination: We suggest the occurrence of a radical exchange reaction for the Si, Sn, and Ge systems, with kexchange (CF3 + Sn(Me)4) ~ 107 ml m?1 s?1.  相似文献   

13.
The reaction of CF3 radicals with H2O (D2O) has been studied over the range of 533–723 K using the photolysis and the pyrolysis of CF3I as the free radical source. Arrhenius parameters for the reactions where X = H or D, relative to CF3 radical recombination are given by where k/k is in cm3/2/mol1/2·s1/2 and θ = 2.303RT/cal/mol. The activation energy and the primary kinetic isotope effect have been compared with those derived from the BEBO method.  相似文献   

14.
The gas-phase photochlorination (λ = 436 nm) of the 1,1,1,2-C2H2Cl4 has been studied in the absence and the presence of oxygen at temperatures between 360 and 420°K. Activation energies have been estimated for the following reaction steps: The dissociation energy D(CCl3CHCl? O2) ± (24.8 ± 1.5) kcal/mole has also been estimated from the difference in activation energy of the direct and reverse reactions The mechanism is discussed and the rate parameters are compared to those obtained for a series of other chlorinated ethanes.  相似文献   

15.
C2F5 radicals were generated in the presence of benzene vapor by the reaction The radicals react with the benzene by addition and pseudo H abstraction The rate constant kadd for the addition reaction (7) is given by where θ = 2.303RT cal/mole and kc is the rate constant for combination of C2F5 radicals. The addition becomes reversible above 110°C. The reactions of CF3 and C2F5 radicals with benzene vapor are compared.  相似文献   

16.
17.
Pulsed laser photolysis/laser-induced fluorescence (LIF) is utilized to measure absolute rate constants of CH radical reactions as a function of temperature and pressure. Multiphoton dissociation of CHBr3 at 266 nm is employed for the generation of CH (X2Π) radicals. The CH radical relative concentration is monitored by exciting fluorescence on the R1(2) line of the (A2Δ – X2Π) transition at 429.8 nm. A resistively heated cell allows temperature studies to be performed from room temperature to ≈?670 K. The following Arrhenius equations are derived: With the exception of SF6, the reactions of sulfur containing species proceed at rates that are near the theoretical gas kinetic collision frequency. Additionally, these reactions all have activation energies that are near zero or slightly negative. These observations are consistent with an insertion-decomposition mechanism being dominant under these conditions.  相似文献   

18.
The kinetics of the gas-phase thermal reaction between CF2(OF)2 and CO has been studied in a static system at temperatures ranging between 110 and 140°C. The only reaction products were CF2O and CO2, giving the following stoichiometry: The reaction is homogeneous. The rate is strictly second order in CF2(OF)2 and CO, and is not affected by the total pressure or by the presence of reaction products. Oxygen promotes a sensitized oxidation of CO and inhibits the formation of CF2O. The experimental results in the absence of oxygen can be explained by a chain mechanism similar to that proposed for the reaction between F2O and CO with an overall rate constant of From the experimental data obtained on the oxygen-inhibited reaction, the rate constant for the primary process can be calculated: The chain length v = 2.5 is independent of the temperature. Taking for collision diameters σ = 6 Å and σCO = 3.74 Å, a value α = 5.3 × 10?3 for the steric factor is obtained.  相似文献   

19.
The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions. The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.  相似文献   

20.
The thermal decomposition of 1,1,1-trifluoro-2-chloroethane has been investigated in the single-pulse shock tube between 1120° and 1300deg;K at total reflected shock pressures from ~2610 to 3350 torr. Under these conditions, the major reaction is the α,α-elimination of hydrogen chloride, with The decomposition also involves the slower α,β-elimination of hydrogen fluoride, with the first-order rate constant given by At temperatures above 1270°K, two additional minor products were observed. These were identified as CF2CFCl and CF3CHCl2 and suggest C? Cl rupture as a third reaction channel leading to complicated kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号