首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermentation diagnosis by multivariate statistical analysis   总被引:1,自引:0,他引:1  
During the course of fermentation, online measuring procedures able to estimate the performance of the current operation are highly desired. Unfortunately, the poor mechanistic understanding of most biologic systems hampers attempts at direct online evaluation of the bioprocess, which is further complicated by the lack of appropriate online sensors and the long lag time associated with offline assays. Quite often available data lack sufficient detail to be directly used, and after a cursory evaluation are stored away. However, these historic databases of process measurements may still retain some useful information. A multivariate statistical procedure has been applied for analyzing the measurement profiles acquired during the monitoring of several fed-batch fermentations for the production of erythromycin. Multivariate principal component analysis has been used to extract information from the multivariate historic database by projecting the process variables onto a low-dimensional space defined by the principal components. Thus, each fermentation is identified by a temporal profile in the principal component plane. The projections represent monitoring charts, consistent with the concept of statistical process control, which are useful for tracking the progress of each fermentation batch and identifying anomalous behaviors (process diagnosis and fault detection).  相似文献   

2.
This article is focused on the zeta potential of bovine serum albumin (BSA). It is useful to know the zeta potentials of substances for further use of them, e.g. for adsorption or the stability of prepared solutions. We decided to create a database of zeta potential measurement. BSA was selected as a model protein for the measurements. The zeta potential was measured at different pH values, temperatures, concentrations and in the presence of KCl and \(\hbox {CaCl}_{2}\). All data were collected and used for the creation of the online application. The users of the online application can select an interval of zeta potentials required and the application shows the conditions under which the BSA solutions should be prepared. These measurements can be used to save time for further experiments, where the database can be used for the direct preparation of samples with desired properties instead of the lengthy preparation of the samples under different conditions and the selection of the appropriate parameters.  相似文献   

3.
The adsorption of cetyldimethylbenzylammonium chloride (CDBACl) on the hanging mercury electrode is studied in various supporting electrolytes at various temperatures from 1 to 50 degrees C. A condensed film with low capacitance is formed at negative potentials at transition temperatures below approximately 40 degrees C. The decrease of the temperature favors the film formation, and increases the width of the capacitance pit, while its value remains practically constant. Hysteresis phenomena are also observed during different scan directions. Capacitance-time curves at the potentials where the film is formed show in some cases a nucleation and growth mechanism with induction time and studied by the Avrami formulation. At high temperatures an increase of the capacitance with time is observed depending on the CDBACl concentration and slightly on the electrolyte used, and is attributed to the formation of hemimicelles. At high negative potentials a second narrow region with lower capacitance values is observed. This is easily observed at very high temperatures, while it is absent at lower temperatures. It depends upon the concentration of CDBACl and the electrolyte used. The results are different from those obtained for the adsorption of cetyltrimethylammonium bromide on mercury, indicating the importance of interaction between the hydrophobic chains.  相似文献   

4.
We describe a class of zwitterionic sulfobetaine (SB) lipids with fascinating salt-dependent properties. SB lipids are zwitter-neutral across a broad pH range; however they have negative surface potentials in the presence of anions and two salt-dependent transition temperatures. These new SB lipids provide insight on the role of charge orientation at the membrane interface and may be useful components in drug delivery systems.  相似文献   

5.
The potential of in-situ Fourier transform infrared (FTIR) spectroscopy measurements in an attenuated total reflection configuration (ATR-FTIRS) for the evaluation of reaction pathways, elementary reaction steps, and their kinetics is demonstrated for formic acid electrooxidation on a Pt film electrode. Quantitative kinetic information on two elementary steps, formic acid dehydration and CO(ad) oxidation, and on the contributions of the related pathways in the dual path reaction mechanism are derived from IR spectroscopic signals in simultaneous electrochemical and ATR-FTIRS measurements over a wide temperature range (25-80 degrees C). Linearly and multiply bonded CO(ad) and bridge-bonded formate are the only formic acid related stable reaction intermediates detected. With increasing temperature, the steady-state IR signal of CO(ad) increases, while that of formate decreases. Reaction rates for CO(ad) formation via formic acid dehydration and for CO(ad) oxidation as well as the activation energies of these processes were determined at different temperatures, potentials, and surface conditions (with and without preadsorbed CO from formic acid dehydration) from the temporal evolution of the IR intensities of CO(ad) during adsorption/reaction transients, using an IR intensity-CO(ad) coverage calibration. At potentials up to 0.75 V and temperatures from 25 to 80 degrees C, the "indirect" CO pathway contributes less than 5% (at potentials < or =0.6 V significantly below 1%) to the total Faradaic reaction current, making the "direct" pathway by far the dominant one under the present reaction conditions. Much higher activation energies for CO(ad) formation and CO(ad) oxidation compared with the effective activation energy of the total reaction, derived from the Faradaic currents, support this conclusion.  相似文献   

6.
Goletz C  Wagner M  Grübel A  Schmidt W  Korf N  Werner P 《Talanta》2011,85(1):650-656
Fluorescence excitation-emission-matrices (EEM) are a useful tool for water quality monitoring. Recent publications show the potential of the method for real time drinking water control. However, in fluorescence measurements there is still a need for standardization to make data interpretation comparable. In this work a standardization procedure based on excitation and emission correction as well as normalization and optional inner filter effect correction is presented. By measurements of humic acid and tryptophan standards with two different spectrometers (LS 50 and LS 55 by PerkinElmer) the procedure application leads to comparable fluorescence intensities with relative standard deviations (median) of 6.6-8.4% and 10.6-12.0%, respectively. These small differences are not avoidable even if all possible correction methods are implemented and constant measurement conditions are given. The used BAM kit for emission correction induced good agreement in peak shape not only for single wavelengths but also for the whole EEM. As a consequence it is necessary to use identical equipment and identical experimental conditions in order to apply this method in fields of water quality control if small changes of fluorescence intensities are relevant for data assessment.  相似文献   

7.
The stress and elasticity tensors for interatomic potentials that depend explicitly on bond bending and dihedral angles are derived by taking strain derivatives of the free energy. The resulting expressions can be used in Monte Carlo and molecular dynamics simulations in the canonical and microcanonical ensembles. These expressions are particularly useful at low temperatures where it is difficult to obtain results using the fluctuation formula of Parrinello and Rahman [J. Chem. Phys. 76, 2662 (1982)]. Local elastic constants within heterogeneous and composite materials can also be calculated as a function of temperature using this method. As an example, the stress and elasticity tensors are derived for the second-generation reactive empirical bond-order potential. This potential energy function was used because it has been used extensively in computer simulations of hydrocarbon materials, including carbon nanotubes, and because it is one of the few potential energy functions that can model chemical reactions. To validate the accuracy of the derived expressions, the elastic constants for diamond and graphite and the Young's Modulus of a (10,10) single-wall carbon nanotube are all calculated at T = 0 K using this potential and compared with previously published data and results obtained using other potentials.  相似文献   

8.
This paper describes the rationale for carrying out EPR studies in human subjects in the clinical setting and the potential approaches and specific steps needed to make such studies feasible and useful. The suggested operational approach is to have the initial applications occur in as clinically useful and simple a manner as possible, with the expectation that once the technique is introduced and accepted in the clinical setting, that more complex and/or more technically difficult applications will be able to be developed. The initial approach should be based on EPR spectroscopy at 1.2 GHz focusing on clinical applications for which in vivo EPR provides a clearly useful approach to important clinical problems for which currently there is no good alternative approach, that can be carried out by measurements within 10 mm of the surface. The suggested initial clinical applications are: guiding tumor therapy for tumors and vascular disease by direct measurements of tissue pO2, characterizing and monitoring implanted drug delivery systems, and monitoring critical care.  相似文献   

9.
A new class of conductive and dimensionally stable surface-modified TiH2 particles prepared by ultra-sonication method is proposed as a non-carbon support for Pt catalysts. Thermal analysis results indicated good thermal stability of these materials at high temperatures in oxygen atmosphere. TiH2 particles are discovered to be stable at potentials higher than 1.5 V in O2-saturated H2SO4 solution. It is also found that the surface-modified TiH2 exhibits a modest electrocatalytic activity toward oxygen reduction reaction. Accelerated durability measurements show that Pt catalysts supported on sonicated TiH2 exhibited superior stability than standard Vulcan XC-72 carbon. High corrosion resistance and thermal stability render better chemical stability and structural integrity to surface-modified TiH2 particles at elevated temperatures.  相似文献   

10.
The adsorption and condensed film formation of dodecyl (DTAB)-, tetradecyl (TTAB)-, hexadecyl (CTAB)-, and octadecyl (OTAB)-trimethylammonium bromides on the hanging mercury electrode is studied in KBr as supporting electrolyte, at various temperatures from 5 to 45 degrees C. A condensed film is formed at negative potentials and at room temperature only in the presence of CTAB. The decrease of the temperature favors the formation of the condensed film. A transition temperature is observed for the film formation. Capacity-time curves at the potentials where the film is formed show a nucleation and growth mechanism, with induction time depending not only on the final potential but also on the initial potential range, although it is in the desorption region. In this temperature range no film is observed for DTAB and TTAB. However, the film is observed for OTAB, but only at higher temperatures, and is more easily formed with increasing temperature. The film is formed in a certain potential region and the nucleation rate increases while moving toward more negative potentials. Hysteresis phenomena are observed during changes of scan direction. The capacity vs time curves for OTAB, where condensed film is formed, are treated using an Avrami plot formulation and have been explained as progressive one-dimensional nucleation with a decrease of the nucleation rate during the overall film formation. The results show a marked effect of the chain length of the alkyl chain on the film formation.  相似文献   

11.
In this work a comparison between redox potentials, obtained by constructing current-potential plots from chronoamperometric measurements, and the parameter sigma(x), as proposed by Zuman in terms of the Hammett substituent parameters, was performed for several quinone compounds. This study shows the limitations of this approach and proves that methods based on quantum chemistry can be used to study the substituent effect in quinone systems. By using the Density Functional Theory, in the Kohn-Sham context with three exchange-correlation functionals, BLYP, B3LYP, and BHLYP, it was found that the electron affinity is good enough to give a useful relationship with experimental redox potentials of quinone systems. This conclusion is reached when the basis set functions involve diffuse functions, and also when the Hartree-Fock exchange energy is included in the exchange-correlation functional. The Fukui function, to describe preferential sites involved at initial stages of a system that bind an electron, is analyzed when electron donor and electron acceptor groups are present as substituents in quinone systems. The methods applied in this work are valid for any kind of quinone compound and will be used in further analysis of the electron reorganization in semiquinone species.  相似文献   

12.
In today’s biotechnology there is an increasing demand for appropriate analytical systems for process control. At present the most widely used control systems are based on measurements of pH, pO2, and pCO2. Such systems do not allow the direct measurement of substrates and products. To overcome this drawback sensors such as enzyme thermistors and enzyme electrodes have been designed and their development into industrial useful sensors for monitoring and controlling is the subject of active research.  相似文献   

13.
Protein energy malnutrition (PEM) is widespread throughout the world in both community and hospital settings. Assessment of PEM in an individual consists of good dietary and clinical assessment, followed by laboratory measurements. Recent changes in body weight and simple anthropometric measurements are also useful. Laboratory measurements have the advantage in that they are independent of body size, they can be made precisely, and allow monitoring of progress. However, laboratory measurements must be interpreted with caution, especially in seriously ill patients in the hospital.  相似文献   

14.
In this review paper, the NBS scale and its limitations are briefly discussed. The magnitude of liquid junction potentials and some calculated values are presented. The use of a molality scale for hydrogen electrode concentration cells at high temperatures is described, and results from measurements on ionization equilibria are summarized. Use of this scale is also recommended for certain circumstances with cells without liquid junction. As an alternative activity scale, use of the Pitzer ion-interaction treatment for ions is recommended for special cases. Finally, reference data are presented for ±HCl in HCl(aq) to 350°C and (HCl+NaCl)(aq) to 200°C that were derived by use of the Pitzer ion-interaction treatment.Presented at the Second International Symposium on Chemistry in High Temperature Water, Provo, UT, August 1991.  相似文献   

15.
Many high quality products are produced in a batch wise manner. One of the characteristics of a batch process is the recipe driven nature. By repeating the recipe in an identical manner a desired end-product is obtained. However, in spite of repeating the recipe in an identical manner, process differences occur. These differences can be caused by a change of feed stock supplier or impurities in the process. Because of this, differences might occur in the end-product quality or unsafe process situations arise. Therefore, the need to monitor an industrial batch process exists. An industrial process is usually monitored by process measurements such as pressures and temperatures. Nowadays, due to technical developments, spectroscopy is more and more used for process monitoring. Spectroscopic measurements have the advantage of giving a direct chemical insight in the process. Multivariate statistical process control (MSPC) is a statistical way of monitoring the behaviour of a process. Combining spectroscopic measurements with MSPC will notice process perturbations or process deviations from normal operating conditions in a very simple manner. In the following an application is given of batch process monitoring. It is shown how a calibration model is developed and used with the principles of MSPC. Statistical control charts are developed and used to detect batches with a process upset.  相似文献   

16.
Mean acoustic bubble temperatures have been measured using a methyl radical recombination (MRR) method, at three ultrasound frequencies (20, 355, and 1056 kHz) in aqueous tert-butyl alcohol solutions (0-0.5 M). The method is based on yield measurements of some of the hydrocarbon products formed from the recombination of methyl radicals that are thermally generated within collapsing bubbles containing tert-butyl alcohol vapor. The mean bubble temperatures were found to decrease substantially with increasing tert-butyl alcohol concentration at 355 and 1056 kHz but only to a small extent at 20 kHz. Extrapolating the mean temperatures measured to zero concentration of tert-butyl alcohol, at a bulk solution temperature of 20 degrees C, gave the order 355 kHz (4300 +/- 200 K) > 1056 kHz (3700 +/- 200 K) > 20 kHz (3400 +/- 200 K). It is also concluded that the temperature derived from the MRR method is a useful diagnostic parameter for sensing the thermal conditions within an active acoustic bubble. However, attention must be given to the fact that the temperature derived from the MRR method is not theoretically well defined.  相似文献   

17.
As is well known, the chemical potentials of polymer and solvent in solution and, hence, the Flory-Huggins interaction parameter χ can be determined from scattered light intensities from dilute and concentrated solutions of the polymer in the solvent concerned. Preferably, measurements should be performed at temperatures as low as possible, provided the temperature exceeds the cloudpoint for the concentration used. It is shown that the lower the temperature and, consequently the higher the scattered light intensity, the better is the accuracy of the parameters obtained. At each temperature the scattered light intensity shows a maximum at some concentration. Below the theta temperature the ratio of scattered light intensity and concentrations also shows a maximum at some concentration. The values and the concentrations of these maxima for various temperatures enable the maximum of the spinodal to be determined. The spinodal itself can be determined by an extrapolation procedure of the reciprocal scattered light intensities. Measurements have been performed with three narrow-distribution polystyrene samples in cyclohexane. On the basis of the results, χ, and its dependence on concentration, temperature, and molecular weight can be determined to high accuracy.  相似文献   

18.
Rotational temperatures deduced from OH molecular spectra have been studied in an analytical argon inductively coupled plasma for various operating conditions. The Boltzmann plots are often curved and temperatures are very different from those deduced from atomic Boltzmann plots or from other molecular species like N2. Generally non-equilibrium is deduced from these observations. But thermal stability of OH and local gradient in the droplet surroundings can to a great part explain these phenomena. Complex simulations seem useful for a satisfactory explanation.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

19.
Surfaces that can actively regulate binding affinities or catalytic properties in response to external stimuli are a powerful means to probe and control the dynamic interactions between the cell and its microenvironment. Active surfaces also enable novel functionalities in biosensors and biomolecular separation technologies. Although electrical stimuli are often appealing due to their speed and localization, the operation of these electrically activated surfaces has mostly been characterized with techniques averaging over many molecules. Without a molecular-scale understanding of how biomolecules respond to electric fields, achieving the ultimate detection sensitivity or localized biological perturbation with the ultimate resolution would be difficult. Using electrochemical atomic force microscopy, we are able to follow the conformational changes of individual, short DNA molecules tethered to a gold electrode in response to an applied potential. Our study reveals conformations and dynamics that are difficult to infer from ensemble measurements: defects in the self-assembled monolayer (SAM) significantly perturb conformations and adsorption/desorption kinetics of surface-tethered DNA; on the other hand, the SAM may be actively molded by the DNA at different potentials. These results underscore the importance of characterizing the systems at the relevant length scale in the development of electrically switchable biofunctional surfaces.  相似文献   

20.
Monolayer films of nucleic acids on solid supports are encountered in a range of diagnostic and bioanalytical applications. These applications often rely on elevated temperatures to improve performance; moreover, studies at elevated temperatures can provide fundamental information on layer organization and functionality. To support such applications, this study compares thermostability of oligonucleotide monolayers immobilized to gold by first coating the gold with a nanometer-thick film (an "anchor layer") of a polymercaptosiloxane, to which DNA oligonucleotides are subsequently tethered through maleimide-thiol conjugation, with thermostability of monolayers formed via widely used attachment through a terminal thiol moiety on the DNA. The temperature range covered is from 25 to 90 °C. After confirming stability of immobilization and, more importantly, retention of hybridization activity even under the harshest conditions investigated, these thermostable films are used to demonstrate measurements of (1) reversible surface melting transitions and (2) temperature dependence of competitive hybridization, when fully matched and mismatched sequences compete for binding to immobilized DNA oligonucleotides. The competitive hybridization experiments reveal a pronounced impact of temperature on rates of approach to equilibrium, with kinetic freezing into nonequilibrium states close to room temperature and rapid approach to equilibrium at elevated temperatures. Modeling of competitive surface hybridization equilibria using thermodynamic parameters derived from surface melting transitions of the individual sequences is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号