首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Unexpected Ring Enlargement of 3-(Dimethylamino)-2,2-dimethyl-2H-azirine to 4,5-Dihydropyridin-2(3H)-one Derivatives The reaction of 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1a ) and 4,4-disubstituted 2-(trifluoromethyl)-1,3-oxazol-5(4H)-ones 7 in MeCN at 70° afforded 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 10 (Scheme 4), whereas no reaction could be observed between 1a and 2-allyl-4-phenyl-2-(trifluoromethyl)-1,3-oxazol-5(2H)-one ( 8a ) or 4,4-dibenzyl-2-phenyl-1,3-oxazol-5(4H)-one ( 9 ). The formation of 10 is rationalized by a mechanism via nucleophilic attack of 1a onto 7 . The failure of a reaction with 9 shows that only activated 1,3-oxazol-5(4H)-ones bearing electron-withdrawing substituents do react as electrophiles with 1a . The amino-azirine 1a and 2,4-disubstituted 1,3-oxazol-5(4H)-ones 2b – e in refluxing MeCN undergo a novel ring enlargement to 4,5-dihydropyridin-2(3H)-ones 11 (Scheme 5). Several side products were observed in these reactions. Two different reaction mechanisms for the formation of 11 are proposed: either 1a undergoes a nucleophilic addition onto the open-chain ketene tautomer of 2 (Scheme 6), or 2 reacts as CH-acidic compound (Scheme 7).  相似文献   

2.
Formation of Methyl 5,6-Dihydro-l, 3(4H)-thiazine-4-carboxyiates from 4-Allyl-l, 3-thiazol-5(4H)-ones . The reaction of N-[1-(N, N-dimethylthiocarbamoyl)-1-methyl-3-butenyl]benzamid ( 1 ) with HCl or TsOH in MeCN or toluene yields a mixture of 4-allyl-4-methyl-2-phenyl-1,3-thiazol-5(4H)-one ( 5a ) and allyl 4-methyl-2-phenyl-1,3-thiazol-2-yl sulfide ( 11 ; Scheme 3). Most probably, the corresponding 1,3-oxazol-5(4H)-thiones B are intermediates in this reaction. With HCl in MeOH, 1 is transformed into methyl 5,6-dihydro-4,6-dimethyl-2-phenyl-1,3(4H)-thiazine-4-carboxylate ( 12a ). The same product 12a is formed on treatment of the 1,3-thiazol-5(4H)-one 5a with HCl in MeOH (Scheme 4). It is shown that the latter reaction type is common for 4-allyl-substituted 1,3-thiazol-5(4H)-ones.  相似文献   

3.
4-Alkoxy-1,3-oxazol-5(2H)-ones of type 4 and 7 were synthesized by two different methods: oxidation of the 4-(phenylthio)-1,3-oxazol-5(2H)-one 2a with m-chloroperbenzoic acid in the presence of an alcohol gave the corresponding 4-alkoxy derivatives 4 , presumably via nucleophilic substitution of an intermediate sulfoxide (Scheme 2). The second approach is the BF3-catalyzed condensation of imino-acetates of type 6 and ketones (Scheme 3). The yields of this more straightforward method were modest due to the competitive formation of 1,3,5-triazine tricarboxylate 8. At 155°, 1,3-oxazol-5(2H)-one 7b underwent decarboxylation leading to an alkoxy-substituted nitrile ylide which was trapped in a 1,3-dipolar cycloaddition by trifluoro-acetophenone to give the dihydro-oxazoles cis- and trans- 9 (Scheme 4). In the absence of a dipolarophile, 1,5-dipolar cyclization of the intermediate nitrile ylide yielded isoindole derivatives 10 (Schemes 4 and 5).  相似文献   

4.
Thermal Generation and Reactions of (Benzylthio)-and (Arylthio)-Substituted Nitrile Ylides Thermolysis of 4-(benzylthio)- and 4-(arylthio)-1,3-oxazol-5(2H)-ones 6 , at 110–155° in the presence of dipolarophiles with activated C≡C, C?C, C?O, C?S, and N?N bonds, led to 5-membered cyclo-adducts and CO2 (cf. Schemes 3, 5-7). Heating 6a and 6c in the presence of ethyl propiolate yielded ethyl quinoline-3-carboxylate ( 19 ) and ethyl pyridine-3-carboxylate( 22 ), respectively (cf. Scheme 8). These results are rationalized on the basis of the intermediate formation of thio-substituted nitrile ylides of type 7 (cf. Scheme 2), which undergo regioselective 1,3-dipolar cycloadditions with reactive dipolarophiles. In the absence of such a dipolarophile, the nitrile ylides isomerize via a [1,4]-H shift to give 2-aza-1,3-butadienes of type 20 . The latter are trapped in a Diels-Alder reaction with ethyl propiolate (cf. Scheme 8).  相似文献   

5.
A New Aminoazirine Reaction. Formation of 3,6-Dihydropyrazin-2(1H)-ones The reaction of 3-(dimethylamino)-2H-azirines 1 and 2-(trifluoromethyl)-1,3-oxazol-5(2H)-ones 5 in MeCN or THF at 50–80° leads to 5-(dimethylamino)-3,6-dihydropyrazin-2(1H)-ones 6 (Scheme 3). Reaction mechanisms for the formation of 6 are discussed: either the oxazolones 5 react as CH-acidic heterocycles with 1 (Scheme 4), or the azirines 1 undergo a nucleophilic attack onto the carbonyl group of 5 (Scheme 6). The reaction via intermediate formation of N-(trifluoroacetyl)dipeptide amide 8 (Scheme 5) is excluded.  相似文献   

6.
3-(Dimethylamino)-2,2-dimethyl-2H-azirine as an Aib Equivalent; Synthesis of Aib Oligopeptides 3-(Dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) reacts with carboxylic acids at 0–25° to give 2-acylamino-N,N,2-trimethylpropionamides ( = 2-acylamino-N,N-dimethylisobutyramide, acyl-Aib-NMe2) in excellent yields (Scheme 2 and 3). Examples of α-amino-, α-hydroxy-, and α-mercapto-carboxylic acids are given. On treatment with HCl in toluene, the terminal dimethylamide group is selectively converted to the corresponding carboxylic acid (→acyl-Aib) via an amide cleavage (Scheme 4 and 5); 1,3-oxazol-5(4H)-ones are intermediates of this amide hydrolysis. This reaction sequence has been used for the extension of peptide chains (Scheme 6). The synthesis of Aib-oligopeptides using this methodology is described (Scheme 8).  相似文献   

7.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

8.
3-(Dimethylamino)-2,2-dimethyl-2H,-azirine as an α-Aminoisobutyric-Acid (Aib) Equivalent: Cyclic Depsipeptides via Direct Amid Cyclization In MeCN at room temperature, 3-(dimethylamino)-2,2-dimethyl-2H-azirine ( 1 ) and α-hydroxycarboxylic acids react to give diamides of type 8 (Scheme 3). Selective cleavage of the terminal N,N-dimethylcarboxamide group in MeCN/H2O leads to the corresponding carboxylic acids 13 (Scheme 4). In toluene/Ph SH , phenyl thioesters of type 11 are formed (see also Scheme 5). Starting with diamides 8 , the formation of morpholin-2,5- diones 10 has been achieved either by direct amide cyclization via intermediate 1,3-oxazol-5(4H)-ones 9 or via base-catalyzed cyclization of the phenyl thioesters 11 (Scheme 3). Reaction of carboxylic acids with 1 , followed by selective amide hydrolysis, has been used for the construction of peptides from α-hydroxy carboxylic acids and repetitive α-aminoisobutyric-acid (Aib) units (Scheme 4). Cyclization of 14a, 17a , and 20a with HCI in toluene at 100° gave the 9-, 12-, and 15-membered cyclic depsipeptides 15, 18 , and 21 , respectively.  相似文献   

9.
A series of 4-(2-keto-substituted)-3,4-dihydro-3-methyl-2H-1,3-benzoxazin-2-ones 1 (Table I) was synthesized by condensation of 3-alkyl-3,4-dihydro-4-hydroxy-2H-1,3-benzoxazin-2-ones 4 with ketones 5 having active alpha hydrogens. In the presence of alcoholic potassium borohydride, compounds 1 underwent reductive transacylation to give 1,3-oxazin-2-one derivatives 3 (Table III, a,b,c). When the other side of the ketone possessed substituents other than hydrogen, there were always also normal reduction products, i.e., secondary alcohols 2 (Table II) in addition to 3.  相似文献   

10.
A series of 2-aryl-5-arylmethylidene-1,3-oxazol-5(4H)-ones and 2-aryl-5-arylmethylidene-N-methyl-3,5-dihydro-4H-imidazol-4-ones was synthesized as structural analogs of combret- astatin A-4 (a compound possessing antitumor activity). (5Z)-5-[(4-Methoxyphenyl)methyl-idene]-3-methyl-2-(4-methylphenyl)-3,5-dihydro-4H-imidazol-4-one was found to exhibit the highest cytotoxicity against cells of human A549 lung carcinoma line (EC50 = 6±0.8 μmol L?1).  相似文献   

11.
Condensation of acetylferrocene with 5-phenyl(4-methylphenyl)-1,2-oxazole-3-carbaldehydes afforded (Е)-3-[5-phenyl(4-methylphenyl)-1,2-oxazol-3-yl]-1-ferrocenylprop-2-en-1-ones. Reactions of (Е)-3-[5-(4-methylphenyl)-1,2-oxazol-3-yl]-1-ferrocenylprop-2-en-1-one with semicarbazide, thiosemicarbazide, and hydroxylamine led to the formation of 5-[5-(4-methylphenyl)-1,2-oxazol-3-yl]-3-ferrocenyl-4,5-dihydro-1H-pyrazole- 1-carboxamide, 5-[5-(4-methylphenyl)-1,2-oxazol-3-yl]-3-ferrocenyl-4,5-dihydro-1H-pyrazole-1-carbothioamide, and 5-(4-methylphenyl)-3'-ferrocenyl-4',5'-dihydro-3,5'-bi-1,2-oxazole respectively. Reactions of (Е)-3-[5-(4-methylphenyl)-1,2-oxazol-3-yl]-1-ferrocenylprop-2-en-1-one with guanidine and thiourea result in 4-[5-(4-methyl-phenyl)-1,2-oxazol-3-yl]-6-ferrocenylpyrimidin-2-amine and -2-thione respectively.  相似文献   

12.
Synthesis of (Methylthio)penam Derivatives via Keten Addition onto 4,5-Dihydro-5-(methylthio)-1,3-thiazoles The 4,5-dihydro-5-(methylthio)-2-phenyl-1,3-thiazoles 3a and 3b , easily prepared from the corresponding 1,3-thiazol-5(4H)-thiones and MeLi, react with dichloroacetyl chloride ( 5a ) and acidoacetyl chloride ( 5b ) in the presence of Et3N to give (methylthio)penam derivatives 6 (Table 1). The reaction mechanism is either a [2 + 2] cycloaddition of in situ generated ketene or a two-step reaction (Scheme 2). The structure of 6f has been confirmed by X-ray crystallography (Fig. 2). The relative configuration of 6a-e follow from comparison of their 1H-NMR spectra with those of 6f (Fig. 1). The 6-azidopenams 6d and 6f have been reduced to aminopenams 8a and 8b , respectively. Acylation of 8a with phenacetyl chloride yields 9 (Scheme 4).  相似文献   

13.
Reactions of 1,3-Thiazole-5(4H)-thiones with Grignard- and Organolithium Compounds: Carbophilic and Thiophilic Additions Organolithium compounds and 1,3-thiazole-5(4H)-thiones 9 reacted via thiophilic addition on the exocyclic S-atom. The intermediate anion E has been trapped by protonation to give 12 and by alkylation to yield 16 , respectively (Schemes 5 and 6). In competition with protonation of E , a fragmentation to benzonitrile and a dithioester 14 was observed (Scheme 5). In some cases, the alkylation of E led to the formation of dithioacetals 17 instead of 16 (Scheme 6). Methyl, ethyl, and isopropyl Grignard reagents and 9 in THF underwent again a thiophilic addition yielding 4,5-dihydro-1,3-thiazoles of type 12 (Scheme 3). In contrast to this result, MeMgI reacted with 9a in Et2O via carbophilic addition to 11 . Again a carbophilic attack at C(5) of 9 was observed with allylmagnesium and 2-propynylmagnesium bromide, respectively, in Et2O.  相似文献   

14.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Benzoxazole-2(3H)-thione The reaction of 3-(dimethylamino)-2H-azirines 2 with 1,3-benzoxazole-2(3H)-thione ( 5 ), which can be considered as NH-acidic heterocycle (pKaca. 7.3), in MeCN at room temperature, leads to 3-(2-hydroxyphenyl)-2-thiohydantoins 6 and thiourea derivatives of type 7 (Scheme 2). A reaction mechanism for the formation of the products via the crucial zwitterionic intermediate A ′ is suggested. This intermediate was trapped by methylation with Mel and hydrolysis to give 9 (Scheme 4). Under normal reaction conditions, A ′ undergoes a ring opening to B which is hydrolyzed during workup to yield 6 or rearranges to give the thiourea 7. A reasonable intermediate of the latter transformation is the isothiocyanate E (Scheme 3) which also could be trapped by morpholine. In i-PrOH at 55–65° 2a and 5 react to yield a mixture of 6a , 2-(isopropylthio)-1,3-benzoxazole ( 12 ), and the thioamide 13 (Scheme 5). A mechanism for the surprising alkylation of 5 via the intermediate 2-amino-2-alkoxyaziridine F is proposed. Again via an aziridine, e.g. H ( Scheme 6 ), the formation of 13 can be explained.  相似文献   

15.
The multi-step synthesis, physico-chemical characterization, and biological activity of novel valine-derived compounds, i.e., N-acyl-α-amino acids, 1,3-oxazol-5(4H)-ones, N-acyl-α-amino ketones, and 1,3-oxazoles derivatives, bearing a 4-[(4-chlorophenyl)sulfonyl]phenyl moiety are reported here. The structures of the newly synthesized compounds were confirmed by spectral (UV-Vis, FT-IR, MS, 1H- and 13C-NMR) data and elemental analysis results, and their purity was determined by RP-HPLC. The new compounds were assessed for their antimicrobial activity and toxicity to aquatic crustacean Daphnia magna. Also, in silico studies regarding their potential mechanism of action and toxicity were performed. The antimicrobial evaluation revealed that the 2-{4-[(4-chlorophenyl)sulfonyl]benzamido}-3-methylbutanoic acid and the corresponding 1,3-oxazol-5(4H)-one exhibited antimicrobial activity against Gram-positive bacterial strains and the new 1,3-oxazole containing a phenyl group at 5-position against the C. albicans strain.  相似文献   

16.
Reactions of multicenter electrophilic substrates, 2-aryl-4-dichloromethylidene-1,3-oxazol-5(4H)-ones, with 2-aminopyridine, involved cleavage of the dihydrooxazole ring by the primary amino group of nucleophilic reagent and subsequent cyclization to imidazopyridine derivatives. The latter reacted with morpholine and its analogs via recyclization with formation of 5-amino-2-aryl-N-(pyridin-2-yl)-1,3-oxazole-4-carboxamides.  相似文献   

17.
The 70 eV mass spectra of 4β-phenyl-substituted cyclopentane- and cyclohexane cis-fused 1,3-oxazin-2(3H)-ones, the two related 2-thiones, 6,7-cis-trimethylene-5β-phenyl-1,4-oxazepin-3(4H)-one and its 2β-methyl derivative were recorded and their fragmentations examined by means of metastable ion analysis, collision induced dissociation technique and exact mass measurement. The fragmentation patterns of the 1,3-oxazin-2(3H)-ones were relatively simple: the favored formation of cycloalkene ions implied that a considerable proportion of the molecular ions might possess an enol structure. Changes in the size of the fused cycloalkane ring had little or no effect on the fragmentations. Instead, small changes in the heterocyclic part of the molecule caused remarkable effects on the fragmentation behavior. Compared to 1,3-oxazin-2(3H)-ones studied, both 1,3-oxazine-2(3H)-thiones and 1,4-oxazepin-3(4H)-ones showed much more complicated fragmentation patterns.  相似文献   

18.
Oxidation of 1,2-Thiazoles; A Convenient Approach to 1,2-Thiazol-3(2H)-one 1,1-Dioxides The 1,2-thiazoles obtained from 3-chloroalk-2-enals and ammonium thiocyanate ( 7 → 9 , Scheme 1) are easily transformed to 1,2-thiazol-3(2H)-one 1,1-dioxidcs 10 on treatment with H2O2 in AcOH at 80°. Hydrogenation of 10 in AcOH yields the corresponding saturated 1,2-thiazolidin-3-one 1,1-dioxides 16 (Scheme 3). Cycloalka[c]-1,2-thiazoles 18 are prepared from 2-[(thiocyanato)methyliden]cycloalkan-1-ones and ammonia (Scheme 4). Surprisingly, oxidation of 18a with H2O2 in AcOH yields the tricyclic oxaziridine 19.  相似文献   

19.
The reaction of 3-(2-oxocycloalkylidene)indol-2-one 1 with thiourea and urea derivatives has been investigated. Reaction of 1 with thiourea and urea in ethanolic potassium hydroxide media leads to the formation of spiro-2-indolinones 2a-f in 40–50% yield and a novel tetracyclic ring system 4,5-cycloalkyl-1,3-diazepino-[4,5-b]indole-2-thione/one 3a-f in 30–35% yield. 3-(2-Oxocyclopentylidene)indol-2-one afforded 5′,6′-cyclopenta-2′-thioxo/ oxospiro[3H-indole-3,4′(3′H)pyrimidin]-2(1H)-ones 2a,b and 3-(2-oxocyclohexylidene)indol-2-one gave 2′,4′a,5′,6′,7′,8′- hexahydro-2′-thioxo/oxospiro[3H-indole-3,4′ (3′H)-quinazolin]-2(1H)-ones 2c-f . Under exactly similar conditions, reaction of 1 with fluorinated phenylthiourea/cyclohexylthiourea/phenylurea gave exclusively spiro products 2g-1 in 60–75% yield. The products have been characterized by elemental analyses, ir pmr. 19F nmr and mass spectral studies.  相似文献   

20.
3-Aryl-1,2,4-triazin-5(2H)-ones 1a-c react with indoles 2a-c in trifluoroacetic acid/chloroform or in boiling butanol or acetic acid to give 3-aryl-6-(indolyl-3)-1,6-dihydro-1,2,4-triazin-5(2H)-ones 3a-g . Oxidation of the dihydro-1,2,4-triazin-5(2H)-ones 3a-e afforded 6-(indolyl-3)-1,2,4-triazin-5(2H)-ones 4a-e , products of nucleophilic substitution of hydrogen in 1a-c . Refluxing 1b with N-methylpyrrote 5b in butanol for an extended time resulted in the formation of 3-(4-chlorophenyl)-6-(1-meuiylpyrrolyl-2)-1,2,4-triazin-5(2H)-one 4h. The reaction of 1a-c with indoles 2a-c , pyrroles 5a,b , 1,3-dimethyl-2-phenylpyrazol-4-one (8) and aminothiazoles 9a,b in acetic anhydride affords the 1-acetyl-3-aryl-6-hetaryl-1,6-dihydro-1,2,4-triazin-5(2H)-ones 6a-s . Reaction of 1a-c with N-methyl-pyrrole 5b in acetic anhydride gives beside the 1:1 addition products 6h-k also the 2:1 addition products 7a-c .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号