首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let α denote a permutation of the n vertices of a connected graph G. Define δα(G) to be the number , where the sum is over all the unordered pairs of distinct vertices of G. The number δα(G) is called the total relative displacement of α (in G). So, permutation α is an automorphism of G if and only if δα(G) = 0. Let π(G) denote the smallest positive value of δα(G) among the n! permutations α of the vertices of G. A permutation α for which π(G) = δα(G) has been called a near‐automorphism of G [ 2 ]. We determine π(K) and describe permutations α of K for which π(K) = δα(K). This is done by transforming the problem into the combinatorial optimization problem of maximizing the sums of the squares of the entries in certain t by t matrices with non–negative integer entries in which the sum of the entries in the ith row and the sum of the entries in the ith column each equal to ni,1≤it. We prove that for positive integers, n1n2≤…≤nt, where t≥2 and nt≥2, where k0 is the smallest index for which n = n+1. As a special case, we correct the value of π(Km,n), for all m and n at least 2, given by Chartrand, Gavlas, and VanderJagt [ 2 ]. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 85–100, 2002  相似文献   

2.
A k‐star is the graph K1,k. We prove a general theorem about k‐star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k‐star factorizations of any power (Kq)s of a complete graph with prime power order q, products C × C ×··· × C of k cycles of arbitrary lengths, and any power (Cr)s of a cycle of arbitrary length. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 59–66, 2001  相似文献   

3.
For graphs A, B, let () denote the number of subsets of nodes of A for which the induced subgraph is B. If G and H both have girth > k, and if () = () for every k-node tree T, then for every k-node forest F, () = (). Say the spread of a tree is the number of nodes in a longest path. If G is regular of degree d, on n nodes, with girth > k, and if F is a forest of total spread ≤k, then the value of () depends only on n and d.  相似文献   

4.
Let d1 d2 dp denote the nonincreasing sequence d1, …, d1, d2, …, d2, …, dp, …, dp, where the term di appears ki times (i = 1, 2, …, p). In this work the author proves that the maximal 2-sequences: 7361515, 7561517, 7761519 are planar graphical, in contrast to a conjecture by Schmeichel and Hakimi.  相似文献   

5.
A k-graph, H = (V, E), is tight if for every surjective mapping f: V → {1,….k} there exists an edge α ? E sicj tjat f|α is injective. Clearly, 2-graphs are tight if and only if they are connected. Bounds for the minimum number ? of edges in a tight k-graph with n vertices are given. We conjecture that ? for every n and prove the equality when 2n + 1 is prime. From the examples, minimal embeddings of complete graphs into surfaces follow. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Let G be a graph and let k′(G) be the edge-connectivity of G. The strength of G, denoted by k?′(G), is the maximum value of k′(H), where H runs over all subgraphs of G. A simple graph G is called k-maximal if k?′(G) ≤ k but for any edge eE(Gc), k?′(G + e) ≥ k + 1. Let G be a k-maximal graph of order n. In [3], Mader proved |E(G)| ≤ (n - k)k + (). In this note, we shall show (n - 1)k - () In?n/k + 2)? ≤ |E(G|, and characterize the extremal graphs. We shall also give a characterization of all k-maximal graphs.  相似文献   

7.
The Ramsey numbers r(m1Kp, …, mcK) are calculated to within bounds which are independent of m1, …, mc when c > 2 and p1, …, pc > 2.  相似文献   

8.
In this paper, we characterize graphs whose tensor product admit nowhere‐zero 3‐flow. The main result is: For two graphs G1 and G2 with δ ≥ 2 and G2 not belonging to a well‐characterized class of graphs, the tensor product of G1 and G2 admits a nowhere‐zero 3‐flow. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 284–292, 2007  相似文献   

9.
The degree sequence (d0, d1, …, dp-1) of a graph G of order p is defined by dk = the number of points of G of degree k. Methods of Robinson are extended to produce a generating function F(x0, x1, x2, …) where the coefficient of xx is the number of graphs of order p having degree sequence (d0, …, dp-1).  相似文献   

10.
The 1‐chromatic number χ1(Sp) of the orientable surface Sp of genus p is the maximum chromatic number of all graphs which can be drawn on the surface so that each edge is crossed by no more than one other edge. We show that if there exists a finite field of order 4m+1, m≥3, then 8m+2≤χ1(S)≤8m+3, where 8m+3 is Ringel's upper bound on χ1(S). © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 179–184, 2010  相似文献   

11.
A set S of vertices is a determining set for a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G, denoted Det(G), is the size of a smallest determining set. This paper begins by proving that if G=G□?□G is the prime factor decomposition of a connected graph then Det(G)=max{Det(G)}. It then provides upper and lower bounds for the determining number of a Cartesian power of a prime connected graph. Further, this paper shows that Det(Qn)=?log2n?+1 which matches the lower bound, and that Det(K)=?log3(2n+1)?+1 which for all n is within one of the upper bound. The paper concludes by proving that if H is prime and connected, Det(Hn)=Θ(logn). © 2009 Wiley Periodicals, Inc. J Graph Theory  相似文献   

12.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals χ(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G. The main result is that χc(μ(G)) = χ(μ(G)), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As χc(G) = and χ(G) = , consequently, there exist graphs G such that χc(G) is as close to χ(G) − 1 as you want, but χc(μ(G)) = χ(μ(G)). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999  相似文献   

13.
A proper edge coloring of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by χ(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using χ(G) colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 22–36, 2010  相似文献   

14.
Let K denote the graph obtained from the complete graph Ks+t by deleting the edges of some Kt‐subgraph. We prove that for each fixed s and sufficiently large t, every graph with chromatic number s+t has a K minor. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 343–350, 2010  相似文献   

15.
For a positive integer d, the usual d‐dimensional cube Qd is defined to be the graph (K2)d, the Cartesian product of d copies of K2. We define the generalized cube Q(Kk, d) to be the graph (Kk)d for positive integers d and k. We investigate the decomposition of the complete multipartite graph K into factors that are vertex‐disjoint unions of generalized cubes Q(Kk, di), where k is a power of a prime, n and j are positive integers with jn, and the di may be different in different factors. We also use these results to partially settle a problem of Kotzig on Qd‐factorizations of Kn. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 144–150, 2000  相似文献   

16.
Let a random graph G be constructed by adding random edges one by one, starting with n isolated vertices. We show that with probability going to one as n goes to infinity, when G first has minimum degree two, it has at least (log n) distinct hamilton cycles for any fixed ?>0.  相似文献   

17.
Let q be a prime power, ??q be the field of q elements, and k, m be positive integers. A bipartite graph G = Gq(k, m) is defined as follows. The vertex set of G is a union of two copies P and L of two‐dimensional vector spaces over ??q, with two vertices (p1, p2) ∈ P and [ l1, l2] ∈ L being adjacent if and only if p2 + l2 = pl. We prove that graphs Gq(k, m) and Gq(k′, m′) are isomorphic if and only if q = q′ and {gcd (k, q ? 1), gcd (m, q ? 1)} = {gcd (k′, q ? 1),gcd (m′, q ? 1)} as multisets. The proof is based on counting the number of complete bipartite INFgraphs in the graphs. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 322–328, 2005  相似文献   

18.
Lins has conjectured that the two 3-manifolds that he refers to as H and are not homeomorphic. He suggests that their fundamental groups may be the same, but that they may be distinguishable by their quantum invariants. This article describes the proof that they, in fact, have different fundamental groups. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 298–302, 1999  相似文献   

19.
Let K denote the complete graph K2n+1 with each edge replicated r times and let χ′(G) denote the chromatic index of a multigraph G. A multigraph G is critical if χ′(G) > χ′(G/e) for each edge e of G. Let S be a set of sn – 1 edges of K. We show that, for 0 < sr, G/S is critical and that χ′ (G/(S ∪{e})) = 2rn + rs for all eE(G/S). Plantholt [M. Plantholt, The chromatic index of graphs with a spanning star. J. Graph Theory 5 (1981) 5–13] proved this result in the case when r = 1.  相似文献   

20.
We prove that any solution of the problem (u+K*u)t+∑ai(u)u=0 on (0,∞)×ℝN with spatially periodic initial data converges to a constant provided some non-degeneracy conditions on the kernel K and the non-linear functions ai,i=1,…,N are imposed. © 1997 B. G. Teubner Stuttgart-John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号