首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Six non-anomeric isourea derivatives of d-fructose (7, 8), d-glucose (9, 10), 6-deoxy-l-altrose (11) and l-rhamnose (12) were synthesized from the precursors 16 by a CuCl-catalyzed addition of a non-glycosidic OH-group to DCC and DIPC, respectively. Subsequently, the isoureido group of phenyl 2,3,4-tri-O-benzyl-6-O-(N,N′-dicyclohexylisoureido)-β-d-glucopyranoside (10) was replaced by an azido and a thioacetyl group, respectively, yielding the corresponding 6-deoxy-6-azido-d-glucopyranoside (13) and 6-deoxy-6-thioacetyl-d-glucopyranoside (14) in moderate to good yields.  相似文献   

2.
Abstract

Reaction of 2,3:4,5-di-O-isopropylidene-β-d-arabino--hexos-2-ulo-2,6-pyranose (1) with (methoxycarbonylmethylene)triphenylphosphorane in either dichloromethane or methanol gave methyl (E)-2,3-dideoxy-4,5:6,7-di-O-isopropylidene-β-d-arabino-oct-2-ene-4-ulo-4,8-pyranosonate (2) or a 1:2.3 mixture of 2 and its Z-isomer (3), respectively. Bishydroxylation of 2 with osmium tetraoxide gave a mixture of methyl 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (4) and -d-glycero-d-ido-oct-4-ulo-4,8-pyranosonate (5) which were carefully resolved by column chromatography. Compound 4 was transformed into its 2,3-di-O-methyl derivative (6) which was deacetonated to 7 and subsequently degraded to dimethyl 2,3-di-O-methyl-(+)-L-tartrate (8). On the other hand, acetonation of a mixture of 4 and 5 gave the corresponding tri-O-isopropylidene derivatives (9) and (10). Compounds 4 and 5 were reduced with LiAlH4 to the related 4,5:6,7-di-O-isopropylidene-β-d-glycero-d-galacto- (11) and β-d-glycero-d-ido-oct-4-ulo-4,8-pyranose (12). Treatment of 11 and 12 with acetone/PTSA/CuSO4 only produced the acetonation at the C-2,3 positions. Finally, compounds 11 and 12 were deacetonated to the corresponding D-glycero-d-galacto- (15) and D-glycero-d-ido-oct.-4-ulose (16).  相似文献   

3.
Abstract

A series of three oligosaccharides, α-d-Glc-(1→4)-β-d-GlcA-1ωe, β-d-GlcA-(1→4)-α-d-Glc-(1→4)-β-d-GlcA-lωe and α-d-Glc-(1→4)-β-d-GlcA-(1→4)-α-d-Glc-(1→4)-β-d-GlcA-1ωe was prepared by a short synthetic route, using maltose and glucuronic acid derivatives as starting materials. The oligosaccharides contain glucose residues instead of glucosamines, and have a less complicated structure than the corresponding unsulphated structures found in native heparin and heparan sulphate. This simplification in structure has diminished the number of synthetic steps and raised the total yield compared to the preparation of the corresponding heparin/heparan sulphate structures which have been found to bind acidic and basic FGF.  相似文献   

4.
Abstract

The first total synthesis of tumor-associated glycolipid antigen, sialyl Lea, is described. Methylsulfenyl bromide-silver triflate-promoted coupling of 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-(2,4,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (2) with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (3) afforded the pentasaccharide 4a and 5a in good yields. Glycosylation of 4a with methyl 2,3,4-tri-O-benzyl-1-thio-β-l-fucopyranoside (6) by use of N-iodosuccinimide (NIS) — trifluoromethanesulfonic acid (TfOH) as a promoter, gave the desired hexasaccharide 7. Compound 7 was converted into the α-trichloroacetimidate 10, via reductive removal of benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S, 3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1, 3-diol (11), gave the β-glycoside 12. Finally, 12 was transformed, via selective reduction of the azide group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

5.
The reversed-phased HPLC analysis of the methanol extract of the pericarp of C. taliera Roxb. (Talipalm), a rare species of Arecaceae family, afforded a new steroidal glycoside, β-sitosterol-3-O-α-l-rhamnopyranosyl-(1→4)-β-d-xylopyranosyl-(1→4)-β-d-glucopyranosyl-(1→4)-β-d-glucopyranoside (1). The structure of the compound was elucidated unequivocally by UV, IR, HR-ESI-MS, 1H and 13C NMR spectroscopic studies.  相似文献   

6.
Abstract

A carboxylate-containing pentasaccharide, methyl O-(β-d-galactopyranosyl)-(1→4)-O-(β-d-glucopyranosyl)-(1→6)-O-{3-O-[(S)-1-carboxyethyl]-β-d-galactopyranosyl-(1→4)-O}-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-β-d-galactopyranoside (27) was synthesized by block condensation of suitably protected donors and acceptors. Phenyl 3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (17) was condensed with methyl 2,4,6-tri-O-benzyl-β-d-galactopyranoside (4) to afford a disaccharide, methyl O-(3-O-benzyl-4,6-di-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (18). Removal of chloroacetyl groups gave 4,6-diol, methyl 0-(3-O-benzyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (19), in which the primary hydroxy group (6-OH) was then selectively chloroacetylated to give methyl O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (20). This acceptor was then coupled with 2,4,6-tri-O-acetyl-3-O-[(S)-1-(methoxycarbonyl)ethyl]-α-d-galactopyranosyl trichloroacetimidate (14) to afford a trisaccharide, methyl O-{2,4,6-tri-O-acetyl-3-O-[(S)-l-(methoxycarbonyl)ethyl]-β-d-galactopyranosyl}-(1→4)-O-(3-O-benzyl-6-O-chloroacetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)-(1→3)-2,4,6-tri-O-benzyl-β-d-galactopyranoside (21). Removal of the 6-O-chloroacetyl group in 21 gave 22, which was coupled with 4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-2,3,6-tri-O-acetyl-α-d-glucopyranosyl trichloroacetimidate (23) to yield protected pentasaccharide 24. Standard procedures were used to remove acetyl groups and the phthalimido group, followed by N-acetylation, and debenzylation to yield pentasaccharide 27 and a hydrazide by-product (28) in a 5:1 ratio, respectively. Compound 27 contains a complete repeating unit of the capsular polysaccharide of type III group B Streptococcus in which terminal sialic acid is replaced by an (S)-1-carboxyethyl group.  相似文献   

7.
Abstract

The primary structure of an elicitor-active oligosaccharide, LN-3, prepared from partially hydrolyzed algal laminaran was determined by means of the analyses of glycosyl-linkage, fragments by acetolysis, and glycosyl-sequence. The elicitor-active oligosaccharide, LN-3, is a pyridylaminated hepta-β-d-glucoside which was shown to have the following linear structure: β-d-Glcp(1→6)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→3)-β-d-Glcp(1→6)-β-d-Glcp(1→3)-Glc-PA.  相似文献   

8.
《合成通讯》2013,43(10):1707-1715
Abstract

A simple high-yielding procedure is described for the preparation of tri-O-acetyl-β-l-fucopyranosylformaldoxime (1) involving stannate(II)-mediated reduction of the readily accessible tri-O-acetyl-β-l-fucopyranosylnitromethane (3). The d-mannosyl, d-glucosyl, d-galactosyl, and d-xylosyl analogues 7–12 were prepared similarly. The structure of tetra-O-acetyl-β-d-mannopyranosylformaldoxime (7) was determined by X-ray crystallography.  相似文献   

9.
Abstract

α-Stereocontrolled, glycoside synthesis of trimeric sialic acid is described toward a systematic approach to the synthesis of sialoglycoconjugates containing an α-sialyl-(2→8)-α-sialyl-(2→8)-sialic acid unit α-glycosidically linked to O-3 of a galactose residue in their oligosaccharide chains. Glycosylation of 2-(trimethylsilyl)ethyl 6-O-benzoyl-β-d-galactopyranoside (4) or 2-(trimethylsilyl)ethyl 2,3,6,2′,6′-penta-O-benzyl-β-lactoside (5), with methyl [phenyl 5-acetamido-8-O-[5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1”, 9′-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′, 9-lactone]-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (3), using N-iodosuccinimide-trifluoromethanesulfonic acid as a promoter, gave the corresponding α-glycosides 6 and 8, respectively. The glycosyl donor 3 was prepared from trimeric sialic acid by treatment with Amberlite IR-120 (H+) resin in methanol, O-acetylation, and subsequent replacement of the anomeric acetoxy group with phenylthio. Compounds 6 and 8 were converted into the per-O-acyl derivatives 7 and 9, respectively.  相似文献   

10.
Two new quercetin glycoside derivatives named quercetin-3-O-[2-O-trans-caffeoyl-α-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (1) and quercetin-3-O-[2-O-trans-caffeoyl-β-l-rhamnopyranosyl-(1 → 6)-β-d-glucopyranoside] (2) along with three known flavonoids, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (3), 5,7-dihydroxy-8-methoxyflavone (4) and kaempferol 3-O-β-d-glucopyranoside (5), were isolated from the fruits of Gardenia jasminoides var. radicans. The structures of the new compounds were determined by means of extensive spectroscopic analysis (1D, 2D NMR and HR-ESI-MS), glycoside hydrolysis and sugar HPLC analysis after derivatisation. This is the first report on the isolation of a pair of compounds with α or β-l-rhamnopyranosyl configuration from plant and the first detail assignment of their NMR data.  相似文献   

11.
Two new triterpenoids and three 27-nor-triterpenoids were isolated from the stems (with bark) of Nauclea officinalis. Their structures were identified to be 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-oic acid (1), 2β,3β,19α,23-tetrahydroxy-urs-12-en-28-O-[β-d-glucopyranosyl (1-2)-β-d-glucopyranosyl] ester (2), pyrocincholic acid 3β-O-α-l-rhamnopyranoside (3), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl ester (4), pyrocincholic acid 3β-O-α-l-rhamnopyranosy1-28-O-β-d-glucopyranosyl-(1-6)-β-d-glucopyranosyl ester (5) by spectroscopic methods including 1D, 2D NMR and HR-MS analyses. The cytotoxic activity of 15 against lung cancer A-549 cells was also investigated.  相似文献   

12.
Abstract

Methyl 6-deoxy-6-fluoro-β-d-galactopyranoside has been obtained by treatment of methyl β-d-galactopyranoside with diethyl-aminosulfur trifluoride (DAST). Improvements over the existing syntheses of methyl 2, 3-di-O-benzyl-4-deoxy-4-fluoro-β-d-galacto-pyranoside from the corresponding 6-O-substituted 4-O-arylsul-fonyl-d-gluco derivatives are described. 13C NMR spectra of a series of methyl deoxyfluoro-β-d-galactopyranosides and their per-O-acetyl derivatives have been measured. The data obtained can be used as an aid for the interpretation of 13C NMR spectra of deoxyfluoro-β-d-galactopyranose-containing oligosaccharides and related substances.  相似文献   

13.
Treatment of 2-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)ethanal (1a) and 2-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)ethanal (1b) respectively with malononitrile in the presence of silica gel provided the corresponding 4-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-cyanocrotononitriles (2a) and (2b). Starting from 2a and 2b, respectively, cyclizations with sulfur and triethylamine yielded 5-[2,3,4,6-tetra-O-acetyl-α-D-glycopyranosyl]-2-aminothiophene-3-carbonitriles (3a) and (3b). Further cyclizations could be achieved by utilizing of triethyl orthoformate/ammonia to furnish the 6-(α-D-glycopyranosyl)thieno[2,3-d]pyrimidine-4-amines 4a and 4b.  相似文献   

14.
The pyranone, 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (1) (ascopyrone P), has been synthesised in eight steps from d-glucose. The key steps were deacetylation of 3,6-di-O-acetyl-1,5-anhydro-d-glycero-hex-3-en-2-ulose (8) to give isomers and hydrates of 1,5-anhydro-4-deoxy-d-glycero-hex-3-en-2-ulose (9). Isomerisation of this mixture afforded 1,5-anhydro-4-deoxy-d-glycero-hex-1-en-3-ulose (1) (ascopyrone P) in a moderate yield.  相似文献   

15.
Abstract

An efficient chemoenzymatic synthesis of methyl α-d-allopyranoside and methyl 3-deoxy-α-d-ribo-hexopyranoside starting from methyl 4,6-O-benzylidene-α-d-glucopyranoside is described.  相似文献   

16.
Abstract

The aminolysis of diethyl xylarate was found to proceed through intermediate lactones. In dimethyl sulfoxide at 30°C in the presence of etha-nolamine/ the 1,5-diester is rapidly converted into ethyl d, l-xylaro-1,4-lactone, which reacts with the primary amine to give ethyr N-(2-hydroxyech-yl)-d, l-xylaramide. This compound then forms N-(2-hydroxyethyl)-d, l-xylara-mide-2T5-lactone, which in turn reacts with ethanolamine to produce the final product, N,N'-bis-(2-hydroxyethyl)-d-l-xylaramide. This sequence of reactions was established by 13C NMR spectroscbpy.  相似文献   

17.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

18.
Abstract

3, 6-Di-O-methyl-d-glucose was prepared via 5-O-allyl-1, 2-O-isopropylidene-3-O-methyl-αd-glucofuranose and was converted into 2, 4-di-O-acetyl-3, 6-di-o-methyl-dD-glucopyranosy 1 chloride. Condensation of the chlorosugar with methanol or allyl 2, 3-O-isopropylidene-α-l-rhamnopyranoside gave the corresponding crystalline β-glycbsides. The allyl 4-O-(2,4-di-O-acetyl-3, 6-di-O-Tnethyl-β-dD-glucopyranosyl)-2, 3-O-isopropylidene-α-l-rhamnopyranoside was converted into the title compounds and into crystalline 2, 3-di-O-acetyl-4-O-(2, 4-di-O-benzyl-3, 6-di-O-methyl-β-d-glucopyranosyl)-l-rhamnopyranosyl chloride which should serve as an intermediate for the synthesis of the trisaccharide portion of the major glycolipid of Mycobacterium leprae.  相似文献   

19.
Reactions of 2-formylgalactal 1, presented as an unsaturated sugar derivative with push-pull functionalization, with guanidinium and amidinium salts, respectively, were carried out under basic conditions to furnish the substituted 5-(1,2,4-tri-O-benzyl-d-lyxo-1,2,3,4-tetrahydroxybutyl)pyrimidines 24. Treatment of 1 with 2-aminobenzimidazole and 3-amino-1,2,4-triazole, respectively, afforded 3-(1,2,4-tri-O-benzyl-d-lyxo-1,2,3,4-tetrahydroxybutyl)benzo[4,5]imidazo[1,2-a]pyrimidine (5) and 6-(1,2,4-tri-O-benzyl-d-lyxo-1,2,3,4-tetrahydroxybutyl)-[1,2,4]triazolo[1,5-a]pyrimidine (6).  相似文献   

20.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号