首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polymerization of methyl methacrylate (MMA) with diphenyl diselenide (DPDSE) in the presence of AIBN at 60°C was investigated. DPDSE was worked as a chain transfer agent (CTA). The chain transfer constant (Ctr) of DPDSE for MMA was estimated to be 1.43. On the other hand, DPDSE was functioned as a photoiniferter for the photopolymerization of MMA. In a limited range of conversion, both the polymer yield and number average of molecular weight ([Mbar]n) increased with the reaction time, and the [Mbar]n linearly increased with the yield. The terminal structure of poly(MMA) was investigated by the 77Se NMR spectrum based on Methyl α-phenylseleno isobutylate (MSEPI) as model compound of the ω-chain end of poly(MMA). Further, photopolymerization of poly (MMA) containing phenylseleno group at ω-chain end as a polymeric photoiniferter with MMA effectively afforded a poly (MMA) having higher molecular weight.  相似文献   

2.
1,4-Bis(p-tert-butylphenylselenomethyl)benzene was used as a bifunctional photoiniferter for the polymerization of methyl methacrylate (MMA). Both the polymer yields and the number average of molecular weights ([Mbar]n) of polymers increased with the polymerization time and the [Mbar]n linearly increased with polymer yield. The addition of MMA to the poly(MMA) with irradiation increased the [Mbar]n of the polymer. Photoirradiation of telechelic polystyrene having phenylseleno groups at both ends as polymeric photoiniferter in the presence of MMA or p-chloromethylstyrene afforded effectively corresponding to the ABA type triblock copolymers. On the other hand, photopolymerization of p-methylstyrene with ABA type triblock copolymer of styrene and p-chloromethylstyrene as polymeric photoiniferter afforded to multiblock copolymer of styrene and p-substituted styrenes.  相似文献   

3.
A new bis-allyloxy functionalized ATRP initiator, viz, 4,4-bis (4-(allyloxy) phenyl) pentyl-2-bromo-2-methylpropanoate was synthesized starting from commercially available 4,4-bis (4-hydroxyphenyl) pentanoic acid. Atom transfer radical polymerization of styrene in bulk and that of methyl methacrylate in anisole using CuBr/N,N,N′,N′,N″-pentamethyldiethylenetriamine system was carried out. The kinetic study of styrene polymerization showed controlled polymerization behavior. Bis-allyloxy functionalized well-defined polystyrene (MnGPC: 13,600–28,250, PDI: 1.07–1.09) and poly (methyl methacrylate) (MnGPC: 10,100–18,450, PDI: 1.23–1.34) macromonomers were obtained. The presence of allyloxy functionality was confirmed by 1H NMR spectroscopy. The reactivity of allyloxy functionality was demonstrated by carrying out organic reactions such as addition of bromine and hydrosilylation on polystyrene macromonomer. Polystyrene macromonomer with bis-allyloxy functionality was transformed into bis-epoxy functionalized polystyrene macromonomer using 3-chloroperoxybenzoic acid.  相似文献   

4.
Polystyrene macromonomers with different molecular weight were prepared by radical polymerization of styrene(St) in benzene using β-methacryloxylethyl 2-N,N-diethyldithiocarbamylacetate (MAEDCA) as a monomer-iniferter.Characterization of the macromonomer by ~1H-NMR showed that the end groups were α-methacrylyoxylethyloxycarbonyl-methyl and ω-(N,N-diethyldithiocarbamyl). The macromonomer was difficult to homopolymerize, but it was easilycopolymerized with methyl methacrylate (MMA) initiated by AIBN to form graft copolymers (PMMA-g-PSt) with PStbranches randomly distributed along the PMMA backbone. Copolymerization reaction and the structure of the graftcopolymers were strongly affected by M_n and concentration of the macromonomer. The composition and M_n of the purified graft copolymer were determined by ~1H-NMR and GPC analysis.  相似文献   

5.
The straightforward synthesis of a polystyrene-arm-polybutadiene-arm-poly(methyl methacrylate) triarm star copolymer has been successfully realized by a sequence of reactions which involves the sequential addition of a living polybutadienyllithium to a polystyrene macromonomer with a terminal 1,1-diphenylethylene unit and subsequent polymerization of methyl methacrylate. The high-molecular-weight polystyrene-arm-polybutadiene-arm-poly(methyl methacrylate) star copolymer shows microphase separation into three phases.  相似文献   

6.
IntroductionUseful strategies for the synthesis of polymer-ic particles and their surface modification have re-ceived much attention. In recent years,authorshave been interested in the preparation and thecharacterization of sub- micron to micron- sizemonodisperse polymeric particles by the emulsifier-free radical dispersion copolymerization of hy-drophilic macromonomers and hydrophobicmonomers in polar solvents.Itwas found thatwa-ter- soluble polymer chains grafted on the surfacesof the partic…  相似文献   

7.
Anionic polymerization of methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) or THF/toluene mixture at ?78°C initiated by triphenylmethyl sodium or lithium as initiators. Highly syndiotactic PMMA of low polydispersity (M w/m n = 1.11–1.17) could be prepared with triphenylmethyl lithium in THF or THF/toluene mixture at ? 78°C. Moreover, PMMA macromonomer having one vinylbenzyl group per polymer chain was prepared by the couplings of living PMMA initiated by triphenylmethyl lithium with p-chloromethyl styrene (CMS) at ?78°C. The coupling reaction of living PMMA initiated by triphenylmethyl sodium with CMS was scarcely occurred.  相似文献   

8.
The major part of the present paper discusses the ability of well-defined ω-undecenyl polystyrene, polyisoprene or poly(styrene-block-isoprene) macromonomers to undergo coordination homopolymerization in the presence of selected titanium catalysts. Special emphasis is given to the influence of the nature of the catalyst, the polymerization temperature and the macromonomer molar mass and concentration on homopolymerization yield and average degree of homopolymerization (DPn). Titanium-based catalytic systems such as CpTiCl3/MAO and Cp*TiCl3/MAO only yielded dimers. The use of the homogeneous metallocene catalyst with constrained ligand geometry (CGC-Ti/MAO) having an open active site, significantly improved the degree of polymerization. Increasing macromonomer molar mass, causes only a slight decrease of DPn whereas conversion increased moderately. The final section briefly discusses the copolymerization of ω-undecenyl polystyrene macromonomers with ethylene in the presence of Versipol™ catalysts.  相似文献   

9.
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002  相似文献   

10.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

11.
Poly(methyl methacrylate) with a thiophene end group having narrow polydispersity was prepared by the Atom Transfer Radical Polymerization (ATRP) technique. Subsequently, electrically conducting block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole were synthesized by using p-toluene sulfonic acid and sodium dodecyl sulfate as the supporting electrolytes via constant potential electrolysis. Characterization of the block copolymers were performed by CV, FTIR, SEM, TGA, and DSC analyses. Electrical conductivities were evaluated by the four-probe technique. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4218–4225, 1999  相似文献   

12.
The unsaturated dimer of methyl acrylate [CH2C(CO2CH3)CH2CH2CO2CH3, or MAD] was copolymerized with various monomers to prepare copolymers bearing the ω-unsaturated end group [CH2C(CO2CH3)CH2 ] arising from β fragmentation of the MAD propagating radical. Copolymerizations of MAD with cyclohexyl and n-butyl acrylate resulted in copolymers with ω-unsaturated end groups, and increasing the temperature up to 180 °C resulted in an increase in the rate of β fragmentation of MAD radicals relative to propagation. Only a small amount of unsaturated end groups was introduced by copolymerization with ethyl methacrylate (EMA), and the EMA content in the copolymer increased with temperature. These findings could be explained by the reversible addition of the poly(EMA) radical to MAD. The copolymerization with ethyl α-ethyl acrylate (EEA) did yield a copolymer containing unsaturated end groups with MAD units as part of the main chain, although the steric hindrance of the ethyl group suppressed homopropagation and crosspropagation of EEA, resulting in low polymerization rates. Therefore, the copolymerization of MAD with acrylic esters at high temperatures was noted as a convenient route for obtaining acrylate–MAD copolymers bearing unsaturated end groups at the ω end (macromonomer). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 597–607, 2004  相似文献   

13.
Summary: The preparation of polystyrene block methyl methacrylate copolymers (PS-b-PMMA) is described. The polystyrene segment was prepared by anionic polymerization and the methylmethacrylate segment was prepared via free radical autoxidation of a borane agent attached to the styrene chain. 1 The chemistry involves a transformation of the anionic polymerization process to borane chemistry by firstly producing polystyrene with chain end unsaturated alkyl functional groups prepared using a n-butyllithium initiator and termination with allylchlorodimethylsilane. Secondly, the unsaturated macroinitiator end was hydroborated by 9-borabicyclo[3.3.1]nonane (9-BBN) to produce a borane terminated PS. Thirdly, the borane group at the chain end was selectively oxidized and converted to polymeric radicals in the presence of methyl methacrylate which then initiated radical polymerization to produce block copolymers. The polymer obtained was characterized using several chromatographic techniques including LC-CC (liquid chromatography under critical conditions) for the polystyrene segments and two-dimensional chromatography with LC-CC in the first dimension and SEC in the second. The results show that block formation was successful although significant homopolymerization of methyl methacrylate is also obtained.  相似文献   

14.
Isotactic (it-) and syndiotactic (st-) poly(methyl methacrylate)s (PMMAs) were fractionated into uniform PMMAs (without molecular weight distribution) by supercritical fluid chromatography (SFC). The SFC technique was applied to the isolation of uniform it- and st-PMMAs with a hydroxy group (it- and st-PMMA-OH) at the chain end. Equimolar amounts of uniform it- and st-PMMA-OHs were coupled with sebacoyl dichloride to form uniform stereoblock PMMA. The reaction of uniform st-PMMA-OH with methacryloyl chloride gave uniform PMMA macromonomer with methacryloyl group at the chain end. The resulting uniform macromonomer was polymerized radically and the products were fractionated into uniform comblike polymers (1mer to 4mer) by means of gel-permeation chromatography (GPC). The uniform st-PMMA-OH was reacted with 1, 3, 5-benzenetricarbonyl trichloride to form uniform st-tri-armed star polymer. Some of the properties of these uniform stereoregular polymer architectures were studied.  相似文献   

15.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

16.
Polymeric nanospheres consisting of poly(methyl methacrylate) (PMMA) cores and poly(ethylene glycol) (PEG) branches on their surfaces were prepared by free radical copolymerization of methyl methacrylate (MMA) with PEG macromonomers in ethanol/water mixed solvents. PEG macromonomers having a methacryloyl (MMA‐PEG) and p‐vinylbenzyl (St‐PEG) end group were used. It has become clear that the obtained polymer dispersions form three kinds of states, particle dispersion (milky solution), clear solution, and gel/precipitation. It was found that the reaction parameters such as MMA concentration, molecular weight, and concentration of PEG macromonomers, and water content can affect nanosphere formation in a copolymerization system. The water volume fraction of mixed ethanol/water solvents affected the particle size of the nanospheres. These differences in the formation of nanospheres were due to the solvophilic/solvophobic balance between the copolymers and solvents during the self‐assembling process of the copolymers. The sizes of nanospheres can be controlled by varying concentration of PEG macromonomer and water content in solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1811–1817, 2000  相似文献   

17.
Syndiotactic poly(methyl methacrylate) (st-PMMA) macromonomer having methacryloyl end group was prepared from st-PMMA living anion and separated into uniform macromonomers by means of supercritical fluid chromatography. A uniform macromonomer with the degree of polymerization of 32 was polymerized radically in benzene at 60°C. The uniform dimer, trimer and tetramer of the uniform macromonomer were isolated from the polymerization product by means of gel-permeation chromatography (GPC). The intrinsic viscosity ([η]) in tetrahydrofuran of these uniform comblike polymers was determined by GPC/differential viscometric analysis. The plot of logarithmic [η] against logarithmic molecular weight indicated that the trimer and tetramer assume a little shrinking molecular shape as compared with the unimer and dimer.  相似文献   

18.
The chemical composition distributions (CCDs) of poly(methyl methacrylate)-graft-polystyrene samples prepared from the polystyrene macromonomers having methacryloyl and p-vinylbenzyl end-groups were determined by high-performance liquid chromatography (HPLC) based on reversed-phase and normal-phase adsorption modes. The CCDs determined by both modes were in good agreement with one another, indicating that the effect of the molecular weight distribution on the CCD is negligible. The results demonstrated the features of the CCDs in agreement with the theoretical predictions and the strong effect of the intrinsic reactivity of the end-group on the copolymerization reactivity of the macromonomer.  相似文献   

19.
In order to synthesize block copolymers consisting of segments having dissimilar properties, vinyl polymer - poly (α-amino acid) block copolymers were synthesized by two different methods. In the first method, the terminal amino groups of polysarcosine, poly(γ-benzyl L-glutamate), and poly(γ-benzyloxycarbonyl-L-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly (α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mo (CO)6 or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino cid) (the A component) and vinyl polymer(the B component). The characterization of block copolymers revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was most suitable for the synthesis of vinyl polymer - poly-(α-amino acid) block copolymers. In the second method, poly (methyl methacrylate) and polystyrene having a terminal amino group were synthesized by the radical polymerization in the presence of 2-mercaptoethylammonium chloride. Using these polymers having a terminal amino group as an initiator, the block polymerizations of γ-benzyl L-glutamate NCA and e-benzyloxycarbonyl-L-lysine NCA were carried out, yielding A-B-type block copolymer. By eliminating the protecting groups of the side chains of poly(α-amino acid) segment, block copolymers such as poly(methyl methacrylate) with poly(L-glutamic acid) or poly(L-lysine) and polystyrene with poly(L-glutamic acid) and poly(L-lysine) were successfully synthesized.  相似文献   

20.
Potassium alcoholate was found to initiate the anionic polymerization of 2-(N,N-diethylaminoethyl) methacrylate (AMA) to form poly[2-(N,N-diethylaminoethyl) methacrylate] (PAMA). The molecular weight of the polymers was controlled by the monomer-initiator ratio with a narrow molecular weight distribution. Increased reactivity of the initiator by chelation of the monomer to the cation may be important for the polymerization. Using potassium (4-vinylbenzyl) alcoholate as an initiator, PAMA having a vinylbenzyl group was prepared which is a macromonomer having pH sensitive amino groups in each monomeric unit. By radical copolymerization with styrene, the PAMA macromonomer was incorporated as a graft chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号