首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerization of butadiene catalysed first with V(acac)_3-Al(i-Bu)_2Cl, then with Co(acac)_3-H_2O-Al(i-Bu)_2Cl has been studied. The polymer obtained was identified to be a new variety of cis-1,4-polybutadiene which contained a fraction of trans-1,4-polybutadiene chemically bonded to the cis-1,4-polybutadiene chains. Its molecular weight and trans-1,4 content can be regulated by varying the catalyst composition and concentration as well as other polymerization conditions. The trans-1,4 fraction, although it presents only in 9—16%, forms a crystalline phase in the matrix at room temperature and facilitates the crystallization of the polymer.  相似文献   

2.
烯烃高效催化剂及聚合与共聚合的研究   总被引:1,自引:0,他引:1  
伍青  林尚安 《高分子通报》2005,(4):35-41,22
为中山大学高分子研究所烯烃配位聚合研究室在高效Ziegler-Natta催化剂、茂金属催化剂烯烃聚合与共聚合方面部分研究工作的概述。重点叙述了催化剂的设计、过渡金属配合物配体结构及聚合条件对乙烯、丙烯、1-丁烯、丁二烯、苯乙烯等烯烃单体聚合及共聚合活性以及聚合产物结构和分子量的影响。  相似文献   

3.
The catalysts for alternating copolymerization of butadiene and propylene were investigated by means of ESR technique and potentiometric titration. It was found that several kinds of active species for the production of alternating copolymer, 1,2-polybutadiene, and trans-1,4-polybutadiene are formed, depending upon the catalyst composition of VO(acac)2? Et3Al? Et2AlCl. ESR and potential titration studies suggest that the active species for alternating copolymerization is a divalent vanadium compound existing in an associated form.  相似文献   

4.
Polymerization of butadiene by bis(h3-allylnickel trifluoroacetate) in benzene and o-dichlorobenzene solvents yields an equibinary 1,4-polybutadiene, containing equal amounts of cis and trans isomers. Initiation proceeds by addition of the allylic moiety of the initiator to a butadiene molecule. The rate of initiation is high enough to ensure complete consumption of the catalyst for a monomer/catalyst molar ratio of about 10 at 5°C. The propagation exhibits the characteristics of a “living” polymerization: the molecular weight is proportional to the conversion, and at the end of the reaction, the average degree of polymerization is equal to the monomer/catalyst molar ratio. Living polybutadienyl-nickel trifluoroacetate is able to reinitiate not only butadiene polymerization but also allene polymerization. However, for high [monomer]/[catalyst] ratios, conversion-dependent transfer reactions limit the molecular weight to 7000 in benzene and to 70,000 in bulk polymerization in the presence of small amounts of o-dichlorobenzene.  相似文献   

5.
Alternating copolymerizations of butadiene with propylene and other olefins were investigated by using VO(acac)2–Et3Al–Et2AlCl system as catalyst. Butadiene–propylene copolymer with high degree of alternation was prepared with a monomer feed ratio (propylene/butadiene) of 4. Alternating copolymers of butadiene and other terminal olefins such as butene-1, pentene-1, dodecene-1, and octadiene-1,7 were also obtained. However, the butadiene–butene-2 copolymerization did not yield an alternating copolymer but a trans-1,4-polybutadiene.  相似文献   

6.
A study has been made of the nature of active sites, stereospecificity of their action and the regularities of diene polymerization catalysed by chromium-containing systems. All possible polymer structures with high stereospecificity can be produced for butadiene and isoprene with π-allyl chromium compounds. Tris-π-allyl chromium produces polybutadiene predominantly of 1,2-units. Cis-polybutadiene is formed when the electronegative group (Cl?, CCl3COO?) is substituted for one or two π-allyl groups in Tris-allyl chromium or in the catalytic system (π-C3H5)3CrAl2O3. A catalyst obtained through interaction of (π-C3H5)3Cr with silica-alumina or silica gel produces 1,4-trans-polybutadiene and 1,4-trans-polyisoprene. The rate of butadiene polymerization in the presence of Tris-π-allyl chromium is given by k[Cr]2, and in polymerization of isoprene with the catalytic system (π-C3H5)3Cr-silica-alumina, by k[Cr].[M]2. Polymerization of dienes catalysed by (π-C3H5)3Cr-silica-alumina system or supported chromium oxide catalyst proceeds according to a type of living system. A study was made of copolymerization of butadiene and isoprene in the presence of supported chromium oxide catalyst and with that produced by the reaction of (π-C3H5)3Cr with silica-alumina. The constants of copolymerization for the systems were equal. A conclusion has been drawn regarding the similar mechanisms for diene polymerization under the action of supported chromium oxide catalyst or of catalyst formed in the reaction of (π-C3H5)3Cr with silica-alumina or silica gel.  相似文献   

7.
Copolymerization of styrene (St) and butadiene (Bd) with nickel(II) acetylacetonate [Ni(acac)2]-methylaluminoxane (MAO) catalyst was investigated. Among the metal acetylacetonates [Mt(acac)x] examined, Ni(acac)2 showed a high activity for the copolymerization of St and Bd giving copolymers having high cis-1,4-microstructure in Bd units in the copolymer. The effect of alkylaluminum as a cocatalyst on the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst was observed, and MAO was found to be the most effective cocatalyst for the copolymerization. The monomer reactivity ratios for the copolymerization of St and Bd with the Ni(acac)2-MAO catalyst were determined to be rSt = 0.07 and rBd = 3.6. Based on the obtained results, it was presumed that the random copolymers with high cis-1,4-microstructure in Bd units could be synthesized with the Ni(acac)2-MAO catalyst without formation of each homopolymer. The polymerization mechanism with the Ni(acac)2-MAO catalyst was also discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3838–3844, 1999  相似文献   

8.
The π-allyl nickel halide-oxygen system was found to be active as catalyst for stereospecific polymerization of butadiene. The catalyst from π-allyl nickel chloride or π-allyl nickel bromide yields the polymer of 90% cis-1,4 content with high activity, whereas the catalyst from π-allyl nickel iodide affords a polymer of 70% or less cis-1,4 content. The catalyst systems can be fractionated into two parts on the basis of solubility in benzene. It is concluded that the catalyst activity originates essentially from the benzene-insoluble nickel complex which is composed of oxygen, halogen, σ-allyl group, and nickel. The structure of growing polymer terminal is discussed in relation to the mechanism of the stereospecific polymerization.  相似文献   

9.
The π-allyl nickel halide–organic peroxide system has been found to be active as catalyst for the stereospecific polymerization of butadiene and polymerization of vinyl ether. Benzoyl peroxide is most effective. The catalyst from π-allyl nickel chloride or π-allyl nickel bromide and benzoyl peroxide yields predominantly cis-1,4 polymer with high activity, whereas the catalyst from π-allyl nickel iodide affords predominantly trans-1,4 polymer. The catalyst system can be divided into two parts, a benzene-soluble and a sentially insoluble component. It is concluded that the catalyst activity originates esbenzene-from the insoluble nickel complex which is composed of halogen atom, benzoyloxy group of conjugated structure, allyl group, and nickel. A structure is proposed for the complex.  相似文献   

10.
The stereoregularity of polydienes is almost the same in regard to the individual elements of the lanthanide series, whereas the activity of the Ln catalysts in diene polymerization varies from one to the other within the series. The latter may be attributed to the difference in the number of electrons that occupy the 4f orbitals. It has been proved that the polymerization of dienes with Ln catalysts under certain conditions proceeds by a “living polymer” mechanism. With regard to the polymerization of butadiene, the most active catalyst is a Nd3+species a new binary system of NdCl3-3ROH + AlR3 has been discovered. The cis- 1,4 content in polybutadiene is about 97% and the 1,2 content, less than 1%. For the polymerization of isoprene with a Nd3+ catalyst system, the effects of ligand and alkyl groups in AIR3 on cis-1,4 content (ca. 95%) in polyisoprene can be neglected. For the copolymerization of butadiene and isoprene, the cis-1,4 contents of these two monomeric units in the copolymer are greater than 95% the reactivity ratios r1 and r2 are determined. and the Tg's of the copolymers of various compositions deviate slightly from the calculated values for random copolymers. A linear relationship exists between the yield strength from the stress-strain curve of Ln-polvbutadiene and its [n] This relationship is verified by Ln-polyisoprene and natural rubber but different slopes are obtained  相似文献   

11.
The suspension polymerization of butadiene in the presence of titanium-magnesium nanocatalysts combined with triisobutylaluminum is studied. The resulting polybutadiene is shown to contain up to 99% trans-1,4-units. The dependences of polymer microstructure on temperature and the Al-to-Ti ratio are investigated. The kinetic parameters of the process and the properties of trans-1,4-polybutadiene are examined.  相似文献   

12.
Bulk precipitation polymerization and solution polymerization of butadiene with supported titanium catalyst TiCl4/MgCl2-Al(i-Bu)3 using hydrogen as molecular weight regulator has been performed to synthesize low molecular weight oligomers of trans-1,4-polybutadiene. The effect of the polymerization conditions on the relative molecular weight and structure of the polymer have been studied. Increasing the hydrogen pressure and polymerization temperature resulted in the decrease of intrinsic viscosity of the polymer. By changing the hydrogen pressure, the mole percentage of trans-1,4-unit in the as-obtained polybutadiene can be adjusted, and the maximum value could reach 97%. The degree of crystallinity of the as-synthesized oligomers was about 8–50% with the melting point of form β at about 130–140°C and form α at about 50°C. Through the grafting maleic anhydride, the polar groups were introduced onto the polybutadiene macromolecular chain, which could broaden the application of the non-polar polybutadiene.  相似文献   

13.
It was shown that branches can be incorporated into linear chains of cis-1,4-polybutadiene produced in the presence of neodymium catalysts. Branched polymers were prepared through the copolymerization of butadiene and a low-molecular-mass polybutadiene macromonomer containing a system of conjugated C=C bonds at chain ends. The incorporation of macromonomer units into the polymer chain was confirmed by the IR spectroscopic analysis of macromonomer-perdeuterobutadiene copolymers.  相似文献   

14.
本文研究定向稀土催化剂组份中引入镁铝络合物后对丁二烯聚合的影响。改变镁铝络合物与氯化物的种类和用量,皆明显的影响其聚合活性。当催化剂中含有苯基镁的烷基铝络合物时,聚丁二烯反-1,4链节可达36%。选择适当的催化剂组成和配比时,含镁稀土定向催化剂具有较高的聚合活性。  相似文献   

15.
Butadiene was polymerized by catalysts of the type: metal acetylacetonate (metal: Ti to Ni in the periodic table)–triethylaluminum–aluminum halide, with various ratios of triethylaluminum to aluminum halide. The minimum cis content was observed with vanadium catalyst in all cases, while the minimum polymer yields were observed with the iron and the manganese catalysts. These transition metal effects are discussed in terms of the crystal field theory, and it is suggested that the electrostatic interaction between the nearly nonbonding electrons of transition metal atom and a butadiene molecule or a growing end of the polymeric chain plays an important role in the stereoregular polymerization of butadiene by homogeneous Ziegler-Natta catalysts.  相似文献   

16.
A novel linked‐half‐sandwich lutetium–bis(allyl) complex [(C5Me4? C5H4N)Lu(η3‐C3H5)2] ( 1 ) attached by a pyridyl‐functionalized cyclopentadienyl ligand was synthesized and fully characterized. Complex 1 in combination with [Ph3C][B(C6F5)4] exhibited unprecedented dual catalysis with outstanding activities in highly syndiotactic (rrrr>99 %) styrene polymerization and distinguished cis‐1,4‐selective (99 %) butadiene polymerization, respectively. Strikingly, this catalyst system exhibited remarkable activity (396 kg copolymer (molLu h)?1) for the copolymerization of butadiene and styrene. Irrespective of whether the monomers were fed in concurrent mode or sequential addition of butadiene followed by styrene, diblock copolymers were obtained exclusively, which was confirmed by a kinetics investigation of monomer conversion of copolymerization with time. In the copolymers, the styrene incorporation rate varied from 4.7 to 85.4 mol %, whereas the polybutadiene (PBD) block was highly cis‐1,4‐regulated (95 %) and the polystyrene segment remained purely syndiotactic (rrrr>99 %). Correspondingly, the copolymers exhibited glass transition temperatures (Tg) around ?107 °C and melting points (Tm) around 268 °C; typical values for diblock microstructures. Such copolymers cannot be accessed by any other methods known to date. X‐ray powder diffraction analysis of these diblock copolymers showed that the crystallizable syndiotactic polystyrene (syn‐PS) block was in the toluene δ clathrate form. The AFM micrographs of diblock copolymer showed a remarkable phase‐separation morphology of the cis‐1,4‐PBD block and syn‐PS block. This represents the first example of a lutetium‐based catalyst showing both high activity and selectivity for the (co)polymerization of styrene and butadiene.  相似文献   

17.
The polymerization of N-vinylcarbazole (NVC) in the presence of transition metal salts such as WCI6, MoCI5, TaCl5 and NbCl5 under different reaction conditions was studied. In general, aromatic solvents were found to be superior to aliphatic solvents in the polymerization of NVC, i. e., both conversion and molecular weight were higher in aromatic solvents. It was observed that the polymerization reaction proceeds rapidly and almost quantitatively, even at low monomer concentration (< 5 × 10?2M) and at low catalyst to monomer mole ratio (10?5) in aromatic solvents. The copolymerization of NVC with acenaphthylene (ACN) was also investigated in solution at room temperature. The resulting homo- and copolymer were characterized by IR, NMR, x-ray diffraction, and elemental analysis. Thermal and photophysical properties are also reported. From the spectral data, the polymerization solvent was found to have a strong influence upon the polymer stereoregularity.  相似文献   

18.
The polymerization of butadiene (Bd) with the soluble and insoluble parts of the NiCl2‐methylaluminoxane (MAO) catalyst was investigated. Both parts initiate the polymerization of Bd to give a high molecular weight polymer consisting of mainly cis‐1,4‐structure. The activity of the soluble part for the polymerization is higher than that of the insoluble part. We presume that NiCl2 reacts with MAO to give a soluble alkyl‐nickel complex that shows high activity for the polymerization of Bd.  相似文献   

19.
Butadiene polymerizes to cis-1,4 polymer on irregularly stacked, halogen-deficient crystals of cobalt(II) or nickel(II) halides. Halogen is removed from the halides by heating the salts under high vacuum or by photolyzing them in the presence of butadiene. Intrinsic viscosity and solubility of the polymer reach a steady state during polymerization. Cobalt chloride produces polymer of higher intrinsic viscosity than nickel chloride, but polymerization on nickel chloride is faster. Catalytic activity is attributed to the presence of ≤0.1% of nickel and cobalt monohalides in the catalyst.  相似文献   

20.
Homo- and copolymerizations of butadiene (BD) and styrene (St) with rare-earth metal catalysts, including the most active neodymium (Nd)-based catalysts, have been examined, and the cis-1,4 polymerization mechanism was investigated by the diad analysis of copolymers. Polymerization activity of BD was markedly affected not only by the ligands of the catalysts but also by the central rare-earth metals, whereas that of St was mainly affected by the ligands. In the series of Nd-based catalysts [Nd(OCOR)3:R = CF3, CCl3, CHCl2, CH2Cl, CH3], Nd(OCOCCl3)3 gave a maximum polymerization activity of BD, which decreased with increasing or decreasing the pKa value of the ligands. This tendency was different from that for Gd(OCOR)3 catalysts, where the CF3 derivative led to the highest polymerization activity of BD. For the polymerization of St and its copolymerization with BD, the maximum activities were attained at R = CCl3 for both Nd- and Gd-based catalysts. The copolymerization of BD and St with Nd(OCOCCl3)3 catalyst was also carried out at various monomer feed ratios, to evaluate the monomer reactivity ratios as rBD = 5.66 and rSt = 0.86. The cis-1,4 content in BD unit decreased with increasing St content in copolymers. From the diad analysis of copolymers, it was indicated that Nd(OCOCCl3)3 catalyst controls the cis-1,4 structure of the BD unit by a back-biting coordination of the penultimate BD unit. Furthermore, the long range coordination of polymer chain by the neodymium catalyst was suggested to assist the cis-1,4 polymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 241–247, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号