首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This paper presents a computationally efficient method to find the steady-state distributions of actual queueing times of the first customer, as well as of a randomly selected customer, of an arrival group for the queueing systemGI X /M/1, and hence the queueing-time distribution of a customer for the systemGI/E X /1. The distribution of virtual queueing time is also obtained. Approximate analysis based on one or more roots is also discussed. Though the exact detailed as well as approximate computations for a variety of interarrival-time distributions such as generalized Erlang, mixed generalized Erlang, hyperexponential, generalized hyperexponential, and deterministic have been carried out, only representative results in the form of tables have been appended. The results obtained should prove useful to queueing theorists, practitioners, and others.  相似文献   

2.
We consider aM X/G/1 queueing system withN-policy. The server is turned off as soon as the system empties. When the queue length reaches or exceeds a predetermined valueN (threshold), the server is turned on and begins to serve the customers. We place our emphasis on understanding the operational characteristics of the queueing system. One of our findings is that the system size is the sum of two independent random variables: one has thePGF of the stationary system size of theM X/G/1 queueing system withoutN-policy and the other one has the probability generating function j=0 N=1 j z j/ j=0 N=1 j , in which j is the probability that the system state stays atj before reaching or exceedingN during an idle period. Using this interpretation of the system size distribution, we determine the optimal thresholdN under a linear cost structure.  相似文献   

3.
This paper derives a conservation law for mean waiting times in a single-server multi-class service queueing system (M X/G/1 type queue) with setup times which may be dependent on multiple customer classes and its arrival batch size by using the work decomposition property in the queueing system with vacations.  相似文献   

4.
Choudhury  Gautam 《Queueing Systems》2000,36(1-3):23-38
This paper deals with an MX/G/1 queueing system with a vacation period which comprises an idle period and a random setup period. The server is turned off each time when the system becomes empty. At this point of time the idle period starts. As soon as a customer or a batch of customers arrive, the setup of the service facility begins which is needed before starting each busy period. In this paper we study the steady state behaviour of the queue size distributions at stationary (random) point of time and at departure point of time. One of our findings is that the departure point queue size distribution is the convolution of the distributions of three independent random variables. Also, we drive analytically explicit expressions for the system state probabilities and some performance measures of this queueing system. Finally, we derive the probability generating function of the additional queue size distribution due to the vacation period as the limiting behaviour of the MX/M/1 type queueing system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
This paper deals with numerical computations for the bulk-arrival queueing modelGI X/M/1. First an algorithm is developed to find the roots inside the unit circle of the characteristic equation for this model. These roots are then used to calculate both the moments and the steady-state distribution of the number of customers in the system at a pre-arrival epoch. These results are used to compute the distribution of the same random variable at post-departure and random epochs. Unifying the method used by Easton [7], we have extended its application to the special cases where the interarrival time distribution is deterministic or uniform, and to cases whereX has a given arbitrary distribution. We also improved on the various root-finding methods used by several previous authors so that high values of the parameters, in particular large batch sizes, can be investigated as well.  相似文献   

6.
This paper studies the operating characteristics of an M[x]/G/1 queueing system under a modified vacation policy, where the server leaves for a vacation as soon as the system is empty. The server takes at most J vacations repeatedly until at least one customer is found waiting in the queue when the server returns from a vacation. We derive the system size distribution at different points in time, as well as the waiting time distribution in the queue. Further, we derive some important characteristics including the expected length of the busy period and idle period. This shows that the results generalize those of the multiple vacation policy and the single vacation policy M[x]/G/1 queueing system. Finally, a cost model is developed to determine the optimum of J at a minimum cost. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, we apply the strong stability method to obtain an estimate for the proximity of the performance measures in the M/G/1 queueing system to the same performance measures in the M/M/1 system under the assumption that the distributions of the service time are close and the arrival flows coincide. In addition to the proof of the stability fact for the perturbed M/M/1 queueing system, we obtain the inequalities of the stability. These results give with precision the error, on the queue size stationary distribution, due to the approximation. For this, we elaborate from the obtained theoretical results, the STR-STAB algorithm which we execute for a determined queueing system: M/Coxian − 2/1. The accuracy of the approach is evaluated by comparison with simulation results.  相似文献   

8.
This paper deals with the steady state behaviour of an MX/G/1 retrial queue with an additional second phase of optional service and unreliable server where breakdowns occur randomly at any instant while serving the customers. Further concept of Bernoulli admission mechanism is also introduced in the model. This model generalizes both the classical MX/G/1 retrial queue subject to random breakdown and Bernoulli admission mechanism as well as MX/G/1 queue with second optional service and unreliable server. We carry out an extensive analysis of this model.  相似文献   

9.
《随机分析与应用》2013,31(3):559-565
For the GI X /M/1 queue, it has been recently proved that there exist geometric distributions that are stochastic lower and upper bounds for the stationary distribution of the embedded Markov chain at arrival epochs. In this note we observe that this is also true for the GI X /M Y /1 queue. Moreover, we prove that the stationary distribution of its embedded Markov chain is asymptotically geometric. It is noteworthy that the asymptotic geometric parameter is the same as the geometric parameter of the upper bound. This fact justifies previous numerical findings about the quality of the bounds.  相似文献   

10.
Abstract

In this article, we study a queueing system M x /G/1 with multiple vacations. The probability generating function (P.G.F.) of stationary queue length and its expectation expression are deduced by using an embedded Markov chain of the queueing process. The P.G.F. of stationary system busy period and the probability of system in service state and vacation state also are obtained by the same method. At last we deduce the LST and mean of stationary waiting time in the service order FCFS and LCFS, respectively.  相似文献   

11.
In this work, we use the strong stability method to study the batch arrival queue after a perturbation of the batch size distribution. We show that, under some hypotheses, the characteristics of the batch arrival queueing system M X /M/1 may be approximated by the correspondent characteristics of the system M Geo /M/1.

After clarifying the conditions of approximation, we obtain stability inequalities with an exact computation of constants.  相似文献   

12.
《随机分析与应用》2013,31(3):739-753
Abstract

We consider an M x /G/1 queueing system with a random setup time, where the service of the first unit at the commencement of each busy period is preceded by a random setup time, on completion of which service starts. For this model, the queue size distributions at a random point of time as well as at a departure epoch and some important performance measures are known [see Choudhury, G. An M x /G/1 queueing system with setup period and a vacation period. Queueing Sys. 2000, 36, 23–38]. In this paper, we derive the busy period distribution and the distribution of unfinished work at a random point of time. Further, we obtain the queue size distribution at a departure epoch as a simple alternative approach to Choudhury4 Choudhury, G. 2000. An Mx/G/1 queueing system with setup period and a vacation period. Queueing Syst., 36: 2338. [CROSSREF][Crossref], [Web of Science ®] [Google Scholar]. Finally, we present a transform free method to obtain the mean waiting time of this model.  相似文献   

13.
This paper studies the operating characteristics of an M[x]/G/1 queueing system with N-policy and at most J vacations. The server takes at most J vacations repeatedly until at least N customers returning from a vacation are waiting in the queue. If no customer arrives by the end of the Jth vacation, the server becomes idle in the system until the number of arrivals in the queue reaches N. We derive the system size distribution at a random epoch and departure epoch, as well as various system characteristics.  相似文献   

14.
In this paper we analyze a single removable and unreliable server in the N policy M/G/1 queueing system in which the server breaks down according to a Poisson process and the repair time obeys an arbitrary distribution. The method of maximum entropy is used to develop the approximate steady-state probability distributions of the queue length in the M/G(G)/1 queueing system, where the second and the third symbols denote service time and repair time distributions, respectively. A study of the derived approximate results, compared to the exact results for the M/M(M)/1, M/E2(E3)/1, M/H2(H3)/1 and M/D(D)/1 queueing systems, suggest that the maximum entropy principle provides a useful method for solving complex queueing systems. Based on the simulation results, we demonstrate that the N policy M/G(G)/1 queueing model is sufficiently robust to the variations of service time and repair time distributions.  相似文献   

15.
We consider an M/G/1 queueing system controlled by an exhaustive server–vacation policy, i.e, the server is turned off whenever the system becomes empty and it is turned on after a random time with at least a customer present in the system. In this paper, it is proved that there exists an exhaustive optimal policy which is of the form X + a(T - X)+, where, starting with the server off, X represents the time for the first arrival and T and a are non-negative real numbers. Using a classical average cost structure, the optimization problem is treated under the asymptotic average criterion. A structured definition of exhaustive policy is also derived.  相似文献   

16.
We study a PH/G/1 queue in which the arrival process and the service times depend on the state of an underlying Markov chain J(t) on a countable state spaceE. We derive the busy period process, waiting time and idle time of this queueing system. We also study the Markov modulated EK/G/1 queueing system as a special case.  相似文献   

17.
Two variants of an M/G/1 queue with negative customers lead to the study of a random walkX n+1=[X n + n ]+ where the integer-valued n are not bounded from below or from above, and are distributed differently in the interior of the state-space and on the boundary. Their generating functions are assumed to be rational. We give a simple closed-form formula for , corresponding to a representation of the data which is suitable for the queueing model. Alternative representations and derivations are discussed. With this formula, we calculate the queue length generating function of an M/G/1 queue with negative customers, in which the negative customers can remove ordinary customers only at the end of a service. If the service is exponential, the arbitrarytime queue length distribution is a mixture of two geometrical distributions.Supported by the European grant BRA-QMIPS of CEC DG XIII.  相似文献   

18.
An M[X]/G/1 retrial G-queue with single vacation and unreliable server is investigated in this paper. Arrivals of positive customers form a compound Poisson process, and positive customers receive service immediately if the server is free upon their arrivals; Otherwise, they may enter a retrial orbit and try their luck after a random time interval. The arrivals of negative customers form a Poisson process. Negative customers not only remove the customer being in service, but also make the server under repair. The server leaves for a single vacation as soon as the system empties. In this paper, we analyze the ergodical condition of this model. By applying the supplementary variables method, we obtain the steady-state solutions for both queueing measures and reliability quantities.  相似文献   

19.
We investigate the optimal management problem of an M/G/1/K queueing system with combined F policy and an exponential startup time. The F policy queueing problem investigates the most common issue of controlling the arrival to a queueing system. We present a recursive method, using the supplementary variable technique and treating the supplementary variable as the remaining service time, to obtain the steady state probability distribution of the number of customers in the system. The method is illustrated analytically for exponential service time distribution. A cost model is established to determine the optimal management F policy at minimum cost. We use an efficient Maple computer program to calculate the optimal value of F and some system performance measures. Sensitivity analysis is also investigated.  相似文献   

20.
In this paper, the use of queueing theory for modeling uninterrupted traffic flows is evaluated. Empirical data on speeds and flows are used to evaluate speeds generated by the different queueing models. Using the Theil inequality coefficient as evaluation criterion, the speeds generated by the queueing models are compared to the empirical speeds. Queueing models that best fit the observed speeds are obtained. It appears that traffic flow on a highway during non-congested hours is best described using a M/G/1 queueing model. During the congested hours however, the state dependent queueing GI/G/z models are more realistic. Because the queueing models describe the empirical data well, they can also be used to evaluate potential improvements in existing traffic conditions. Received: April 2005 / Revised version: June 2005 AMS classification: 60K30, 68M20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号