首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of novel functionalized N‐[4‐(4′‐hydroxyphenyloxycarbonyl)phenyl]maleimide and N‐(4‐{[2‐(3‐thienyl)acetyl]oxyphenyl}oxycarbonylphenyl)maleimide (MIThi) were synthesized starting from 4‐maleimido benzoic acid. Photoinduced radical homopolymerization of MIThi and its copolymerization with styrene were performed at room temperature to give linear polymers containing pendant thienyl moieties using ω,ω‐dimethoxy‐ω‐phenylacetophenone as an initiator. Copolymers' compositions and the equilibrium constant (K) for electron donor–acceptor complex formation suggest an alternating nature of the copolymerization. The monomer reactivity ratios and Alfrey–Price Q,e values were also determined. The thermal behavior of the new synthesized monomers and polymers was investigated by differential scanning calorimetry and thermogravimetric analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 995–1004, 2002  相似文献   

2.
A novel bifunctional monomer, namely maleimide glycidyl ether (MalGE), prepared in a four‐step reaction sequence is introduced. This monomer allows for selective (co)polymerization of the epoxide group via cationic ring‐opening polymerization, preserving the maleimide functionality. On the other hand, the maleimide functionality can be copolymerized via radical techniques, preserving the epoxide moiety. Cationic ring‐opening multibranching copolymerization of MalGE with glycidol was performed, and a MalGE content of up to 24 mol% could be incorporated into the hyperbranched polymer backbone (Mn = 1000–3000 g mol−1). Preservation of the maleimide functionality during cationic copolymerization was verified via NMR spectroscopy. Subsequently, the maleimide moiety was radically crosslinked to generate hydrogels and additionally employed to perform Diels‐Alder (DA) “click” reactions with (functional) dienes after the polymerization process. Radical copolymerization of MalGE with styrene (Mn = 5000–9000 g mol−1) enabled the synthesis of a styrene copolymer with epoxide functionalities that are useful for versatile crosslinking and grafting reactions.

  相似文献   


3.
This work deals with design of maleimide monomer toward more precise control of alternating sequence for radical copolymerization with styrene. Crucial in this study is sequence analysis by MALDI‐TOF‐MS for resultant copolymers that was obtained via ruthenium‐catalyzed living radical copolymerization with a malonate‐based alkyl halide initiator showing selective initiation ability. The copolymers of a simple N‐alkyl maleimide [e.g., N‐ethyl maleimide (EMI)] with styrene gave complicated peak patterns for the MALDI‐TOF‐MS spectra indicating low degree of alternating sequence, in contrary to expectation from the reactivity ratios (almost zero). A simple substitution of methyl group (CH3) of EMI with trifluoromethyl (CF3: CF3‐MI) made the peak patterns much simpler giving the copolymer with higher alternating sequence. More interestingly, the peak interval of the copolymer at earlier polymerization stage was equal to sum of the molecular weights of CF3‐MI and styrene, suggesting possibility of the pair propagation of the monomers. Indeed, 1H NMR analyses of the mixture of maleimide with styrene suggested stronger interaction of CF3‐MI than EMI. Based on the results, maleimide derivatives carrying a substituent‐designable electron‐withdrawing group [ROC(?O)N–: R = substituent] were newly designed toward incorporation of functional side chains. They also gave higher alternating sequence for the copolymerization with styrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 367–375  相似文献   

4.
The synthesis of versatile fluorine compounds and monomers for conducting polymer research and cyclopolymerizations is presented. Semiprotected 2,3,5,6-tetrafluoroterephthaldehyde 1 could be elaborated through Wittig olefination chemistry, deprotection and reduction to the previously unknown 4-vinyl-2,3,5,6-tetrafluorobenzylalcohol 8 in good yields. Compound 8 can be reacted to form the malonate ester, and then alkylation on the malonate moiety in mild conditions affords difunctional monomer 3. Through sequential esterifications on the malonate moiety, and subsequent alkylation, compound 4, a difunctional monomer for cyclopolymerization bearing one styrene and one perfluoroaryl styrene moiety, has been obtained. Preliminary experiments show that it is possible to cyclopolymerize 4 under free radical conditions.  相似文献   

5.
The synthesis of styrenic monomers that have pyrazolic or bipyrazolic pendant groups is described. Their homopolymerization and their copolymerization with maleic anhydride (MA) and N-(3-acetoxy propyl) maleimide is reported. The monomers were prepared from the Williamson reaction between 2-pyridine carbinol, hydroxy monopyrazole, hydroxy bipyrazole, and chloromethyl styrene. The homopolymerizations of such styrenic monomers were tried under different conditions, which led to low molecular weight polymers with a high polydispersity. However, alternating copolymers were obtained using maleic anhydride or N-(3-acetoxy propyl) maleimide as comonomers, as shown by 1H-NMR, elemental analysis, and reactivity ratios r1 and r2. Furthermore, the hydrolysis of the acetate function of different copolymers was performed quantitatively. Unlike the acetoxy copolymers, such products do not have any glass transition temperature. Thermogravimetric investigations have shown that these copolymers exhibit good thermostability. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Polymers containing the N-(4-hydroxy-3-nitrophenyl)succinimide residue were designed in order to achieve acyl activation of a reacting carboxylic acid in the solid phase. These polymers were prepared through the following three routes: (a) styrene was allowed to copolymerize with N-(4-hydroxy-3-nitrophenyl)- or N-(4-acetoxy-3-nitrophenyl)maleimide, (b) styrene was copolymerized with N-(4-acetoxyphenyl)maleimide in the presence of divinylbenzene (DVB), and the copolymer obtained was hydrolyzed and nitrated, (c) a copolymer of maleic anhydride and styrene was reacted with p-aminophenol, followed by nitration. The polymers prepared by routes b and c were converted to the activated polymer esters of N-blocked amino acids and peptides by using dicyclohexylcarbodiimide (DCC). The acylated polymers thus obtained were treated with amino acid esters and found to give peptides quantitatively without racemization.  相似文献   

7.
Abstract

Free radical copolymerization of styrene (St) and N(4-bro-mophenyl)maleimide (4BPMI) in dioxane solution gave an alternating copolymer in all proportions of feed comonomer compositions. The monomer reactivity ratios were found to be r 1, = 0.0218 ± 0.0064 (St) and r 2, = 0.0232 ± 0.0112 (4BPMI), and the activation energy of the copolymerization reaction for the equimolar ratios of comonomer was E a, = 51.1 kJ/mol. The molecular weights of the copolymers obtained are relatively high, the T g's showed similar values (490 K), and the thermal stability is higher than that of polystyrene. The initial rate of copolymerization depends on the total concentration of the comonomers and the maximum occurred at higher 4BPMI mol fractions; however, the overall conversion is highest at equimolar comonomer composition. It has been shown that a charge-transfer complex participates in the process of copolymerization. The initial reaction rate was measured as a function of the monomer molar ratios, and the participation of the charge-transfer complex monomer and the free monomers was quantitatively estimated.  相似文献   

8.
Sodium N-(4-sulfophenyl) maleimide (SPMI) and its saturated succinimide counterpart were first prepared according to established methods. Hydrolysis experiments on these monomers monitored by 1H-NMR showed that although SPMI monomer was about 15% hydrolyzed in D2O at 23°C in 24 h. Sodium N-(4-sulfophenyl) succinimide, which is similar in structure to the imide units in the copolymers, was only 1% hydrolyzed after 18 days at 23°C and 29% hydrolyzed after 18 days at 60°C. This indicated that the saturated imide rings in the copolymer might be sufficiently stable to hydrolysis for the copolymers to be useful. However, hydrolysis at high pH demonstrated that the imide rings would be rapidly saponified under alkaline conditions, destroying the structural rigidity that the intact rings might have provided in the copolymer chains. Sodium N-(4-sulfophenyl) maleimide (SPMI) was copolymerized with acrylamide in water at 30°C without cleavage of the imide ring. Water-soluble poly [acrylamide-co-sodium-N-(4-sulfophenyl) maleimide] (PAMSM) samples containing from 7.4 to 64 mol % imide were prepared. Photoacoustic FTIR and 13C-NMR spectra were used to confirm the structure of the copolymers obtained. Elemental analysis was used to determine the imide content of the copolymers, and from this composition data reactivity ratios were calculated for the two component monomers.  相似文献   

9.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

10.
Three sulfonyloxymaleimides (RsOMI), N-(tosyloxy)maleimide (TsOMI), N-(methane-sulfonyloxy)maleimide (MsOMI), and N-(trifluoromethanesulfonyloxy)maleimide (TfOMI), have been synthesized and used to make novel photoacid generating polymers. The sulfonyloxymaleimides easily copolymerized with styrene derivatives to give high molecular weight polymers having an alternating structure of both monomer units. Terpolymers based on RsOMI and p-(tert-butyloxycarbonyloxy)styrene (t-BOCSt) were prepared for enhancing resist properties such as adhesion to substrates, solubility in aqueous alkaline solutions, or transparency in the deep-UV region. The RsOMI copolymers were found to produce corresponding sulfonic acids (RsOH), TsOH, MsOH, and TfOH, by deep-UV irradiation in the film state. Thus, the polymers having both the RsOMI and t-BOCSt units show the capability of a single-component, chemically amplified resist system in the deep-UV region without addition of any photoacid generator. Positive- and negative-tone images were obtained by exposure of the polymer films to deep-UV and post-exposure bake followed by development with organic solvents or aqueous alkaline solutions. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
N-(Monohalogenphenyl)maleamic acids (I) and N-(monohalogenphenyl) maleimides (II) which contained bromide or chlorine atoms in the 2-, 3-, or 4-position of the phenyl ring and their respective isoimides (III) were prepared. The radical copolymerization of Pairs II + styrene and II + butadiene in benzene solution initiated with 2,2′-azobisisobutyronitrile at 50°C was used to determine the monomer reactivity ratios of II. Their values, which are close to zero, indicated an alternating addition of the two monomers on the polymer radical. The thermal stability of the copolymers was characterized by thermogravimetric analysis; their flammability was determined by the method of limiting oxygen index. The copolymerizability of III with styrene and isobutylene was verified at 30°C.  相似文献   

12.
N‐substituted maleimides polymerize in the presence of a radical initiator to give polymers with excellent thermal stabilities and transparency. In this study, we synthesized various maleimide copolymers with styrenes and acrylic monomers to control their thermal and mechanical properties by the introduction of bulky substituents and intermolecular hydrogen bonding. Three‐component copolymers of N‐(2‐ethylhexyl)maleimide in combination with styrene, α‐methylstyrene (MSt), or 1‐methylenebenzocyclopentane (BC5) as the styrene derivatives, and n‐butyl acrylate, 2‐hydroxyethyl acrylate, 4‐hydroxybutyl acrylate, or acrylic acid as the acrylic monomers were prepared by radical copolymerization. These copolymers were revealed to exhibit excellent heat resistance by thermogravimetric analysis. Glass transition temperatures increased by the introduction of bulky MSt and BC5 repeating units. The mechanical properties of the copolymer films were improved by the introduction of intermolecular hydrogen bonding. Optical properties, such as transmittance, refractive index, Abbe number, and birefringence, were determined for the copolymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1569–1579  相似文献   

13.
Abstract

Two new methacryloyl ureas, 1-(2-methylacryloyl)-3-(2,2,6,6-tetra-methylpiperidin-4-yl)-urea and 1-butyl-3-(2-methylacryloyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-urea (monomer I and monomer II), were prepared by the addition reaction of 2-methylacryloyl iso-cyanate with 2,2,6,6-tetramethylpiperidin-4-yl-amine or butyl-(2,2,6,6-tetramethylpiperidin-4-yl)-amine in a molar ratio of 1:1 at low or room temperature. In a similar way, the syntheses of two new methacryloyl carbamates, 1-(2,2,6,6-tetra-methylpiperidin-4-yl)-3-(2-methylacryloyl)-carbamate and l-(1,2,2,6,6-pentamethyl-piperidin-4-yl)-3-(2-methylacryloyl)-carbamate (monomer III and monomer IV), were completed by the reaction of 2,2,6,6-tetra-methylpiperidin-4-ol or 1,2,2,6,6-pentamethylpiperidin-4-ol with 2-methylacryloyl isocyanate in the presence of dibutyltin dilaurate as catalyst at 60°C. The four new monomers were homopolymerized, and copolymerized with styrene by AIBN as initiator at 70°C. The structures of the new monomers and their polymers were characterized by FT-IR and NMR spectroscopy and by GPC.  相似文献   

14.
A maleimide bearing electron-donating chromophore, N-(4-N′,N′-dimethylaminophenyl)-maleimide (DMAPMI) was synthesized from N, N-dimethylaminoaniline and maleic anhydride in the presence of acetic anhydride and sodium acetate. DMAPMI can be easily copolymerized with vinyl acetate (VAc). In addition, it can be easily homopolymerized by UV light irradiation or by using AIBN or BPO as an initiator. The fluorescence spectra of DMAPMI and its polymer or copolymer were recorded and compared at the same chromophore concentrations. It was observed that the fluorescence emission intensity of DMAPMI was much lower than those of its polymers. This may be due to the occurrence of intermolecular charge transfer interaction between the electron-donating dimethylaminophenyl moiety and acrylic electron-accepting carbon-carbon double bond in the monomer. The model compound, N-(4-N′, N′-dimethylaminophenyl)succinimide (DMAPSI), which has no carbon-carbon double bond, displayed the same fluorescence behavior as DMAPMI polymers. The fluorescence of DMAPMI polymers and DMAPSI can be quenched by electron-deficient compounds such as AN, TCNE, MMA, etc. All these results supported the above conclusion. This is another example of the “fluorescence structural self-quenching effect” termed by us previously and demonstrates again that this phenomenon is not an accidental but a general one for acrylic monomers bearing electron-donating chromophores. Study of the initiation behavior of DMAPMI and its polymer showed that they could initiate the photopolymerization of AN, by combination with BPO, they could also initiate the thermopolymerization of vinyl monomers such as MMA. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
6-(N-Substituted nitron-C-yl)-2-pyrones 1 and 6-(4-substituted 1,3-butadienyl)-2-pyrone 2 were prepared and their cycloaddition reactions with three kinds of diene systems were investigated. Namely, the reactions of 1 with methyl acrylate, vinyl crotonate and divinylsulfone took place at the nitrone moiety to afford 3-substituted isoxazolidines 9–14 , and that of 2 with maleimide took place at the 2-pyrone moiety to give a bis-adduct 17 via elimination of carbon dioxide.  相似文献   

16.
A series of α,ω‐heterodifunctional monomers with styrene (St) and maleimide moieties bridged by a varied length of oligo‐ethylene glycol (OEG) linkers were synthesized. Cyclopolymerizations of these monomers through reversible addition–fragmentation chain transfer‐mediated alternating radical copolymerization between intramolecular St and maleimide moieties were investigated. For the monomers with three or more ethylene glycol (EG) units, their cyclopolymerizations can be realized properly in low monomer feeding concentrations, affording well‐defined cyclopolymers with crown ether encircled in their main chains. Importantly, the cyclopolymerizations of monomers with six or seven EG units in the presence of KPF6 could be enhanced by the supramolecular effects between the OEG linkers and the potassium metal ion. Thus, the monomer feeding concentration could be largely improved, which may benefit preparation of the cyclopolymers with high degrees of copolymerization. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 330–338  相似文献   

17.
Abstract

Triblock copolymers with polystyrene outer blocks and an inner polymethacrylate block were synthesized by a site transformation reaction using anionic and cationic polymerization techniques. In order to obtain such ABA block copolymers, two synthetic routes have been applied. In the first case, different methacrylates (methyl methacrylate, 2-ethylhexyl methacrylate) were polymerized anionically with a bifunctional initiator to get poly(methacrylate) dianions later forming the inner block whereas in the second case poly(styrene)-block-poly(methacrylate) anions were synthesized by monofunctional initiation via sequential monomer addition. In a subsequent step, the living chain ends of the methacrylate dianions on one side, and the diblock copolymer anions on the other side, were functionalized with 1,4-bis(l-bromoethyl)benzene in order to obtain a potential bifunctional or monofunctional macroinitiator for the cationic polymerization of styrene. Then, styrene was polymerized cationically with the macroinitiator in the presence of SnCl4 as coinitiator and n Bu4NBr as a common ion salt in CH2Cl2 at -15°C. Block formation was proven by SEC measurements, preparative SEC and NMR characterization.  相似文献   

18.
Environmentally friendly iron(II) catalysts for atom‐transfer radical polymerization (ATRP) were synthesized by careful selection of the nitrogen substituents of N,N,N‐trialkylated‐1,4,9‐triazacyclononane (R3TACN) ligands. Two types of structures were confirmed by crystallography: “[(R3TACN)FeX2]” complexes with relatively small R groups have ionic and dinuclear structures including a [(R3TACN)Fe(μ‐X)3Fe(R3TACN)]+ moiety, whereas those with more bulky R groups are neutral and mononuclear. The twelve [(R3TACN)FeX2]n complexes that were synthesized were subjected to bulk ATRP of styrene, methyl methacrylate (MMA), and butyl acrylate (BA). Among the iron complexes examined, [{(cyclopentyl)3TACN}FeBr2] ( 4 b ) was the best catalyst for the well‐controlled ATRP of all three monomers. This species allowed easy catalyst separation and recycling, a lowering of the catalyst concentration needed for the reaction, and the absence of additional reducing reagents. The lowest catalyst loading was accomplished in the ATRP of MMA with 4 b (59 ppm of Fe based on the charged monomer). Catalyst recycling in ATRP with low catalyst loadings was also successful. The ATRP of styrene with 4 b (117 ppm Fe atom) was followed by precipitation from methanol to give polystyrene that contained residual iron below the calculated detection limit (0.28 ppm). Mechanisms that involve equilibria between the multinuclear and mononuclear species were also examined.  相似文献   

19.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 3‐benzyloxy, 4‐benzyloxy, 3‐ethoxy‐4‐methoxy, 3‐bromo‐4‐methoxy, 5‐bromo‐2‐methoxy, 2‐chloro‐6‐fluoro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

20.
Polymerizations of several vinyl monomers at 25°C in aprotic solvents (dimethyl sulfoxide, N,N-dimethylacetamide, and hexamethylphosphoric triamide) using sodium hydride dispersion as initiator yield low to intermediate molecular weight polymers. The molecular weight of the resulting polymer as well as the mode of initiation depends on the monomer and aprotic solvent used. Initiation of polymerization of monomers with available α hydrogens (methyl acrylate, acrylonitrile) involves monomer anion, while initiation of a monomer with no α hydrogen (methyl methacrylate) proceeds by a more complex mechanism. In contrast, initiation of styrene and α-methylstyrene proceeds by dimsyl anion addition to monomer in dimethylsulfoxide. Although the triad tacticities and number-average molecular weights of poly(methyl methacrylate) samples obtained from all three aprotic solvents are nearly the same, poly(methyl methacrylates) prepared in dimethyl sulfoxide and N,N-dimethylacetamide give polymers having polydispersities of ~3, while a very polydisperse polymer is obtained in hexamethylphosphoric triamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号