首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The infrared spectra (4000 - 50 cm?1) of the square planar rhodium(I) complexes cis-[Rh(CO)2 (pyridine) (X)] (X = Cl, Br) and their isotopomers with pyridine-d 5 and 13CO have been determined. Assignments are based on earlier studies on pyridine and its complexes and on the shifts in infrared bands which are caused by the isotopic substitutions employed. Normal coordinate analysis following the procedure of Becher and Mattes has been used to confirm the empirical assignments. The two v(RhC) bands are observed near 490 and 450 cm?1. v(RhN) is found near 210 cm?1 and v(RhX) occurs at 310 (X = Cl) and 235 (X = Br) cm?1. At frequencies below 200 cm?1, the bands are assigned to bending modes in the following sequence: δ (RhN) > δ (CRhC) > δ (RhCl) > γ (RhCl) > γ (RhN).  相似文献   

2.
EELS spectra of ammonia adsorbed on a Fe(110) single crystal surface at 120 K reveal four different molecular adsorption states:1. At very low exposures (0.05 L) three vibrational losses at 345 cm?1, 1170 and 3310 cm?1 are observed which are attributed to the symmetric Fe-N stretching-, N-H3 deformation and N-H3 stretching modes of chemisorbed molecular ammonia, respectively. The observation of only three vibrational losses indicates an adsorption complex of high symmetry (C3v).2. Further exposures up to 0.5 L cause the appearance of additional losses at 1450 cm?1, 1640 cm?1 and 3370 cm?1. The latter two are interpreted as the degenerate NH3 deformation and - stretching modes of molecularly adsorbed NH3. The 1450 cm?1 loss is a combination of the losses at 345 cm?1 and 1105 cm?1. The observation of 5 vibrational losses is consistent with an adsorption complex of Cs symmetry.3. In the exposure range from 0.5 to 2 L adsorption of molecular ammonia in a second layer is observed. This phase is characterized by a symmetric deformation mode at 1190 cm?1 and by two additional very intense modes at 160 cm?1 and 350 cm?1 which are due to rotational and translational modes.4. Exposures above 2 L cause multilayer condensation of ammonia characterized by translational and rotational bands at 190 cm?1, 415 cm?1 and 520 cm?1, and a symmetric deformation mode at 1090 cm?1. A broad loss feature around 3300 cm?1 is attributed to hydrogen bonding in the condensed layer.Thermal processing of a Fe(110) surface ammonia covered at 120 K leads to decomposition of the ammonia into hydrogen and nitrogen above 260 K. No vibrational modes due to adsorbed NH or HN2 species were detected.  相似文献   

3.
ABSTRACT

The analysis of plastics and fibers is of importance to forensic scientists, especially in the investigation of trace evidence. In this study, we use Fourier transform infrared microscope and confocal Raman spectroscope to investigate two kinds of polymers: poly(butylenes adipate-co-terephthalate) and poly(ethylene terephthalate), which are very similar in structure and cannot be discriminated easily with other instruments. Infrared and Raman spectra were tentatively interpreted. The indicative peaks (937 cm?1, 1121 cm?1 in Infrared spectra; 996 cm?1, 1396 cm?1 in Raman spectra) to distinguish the two polymers were also summarized. The data in this study can help forensic scientists identify these two polymers accurately and avoid wrong certificate of authenticity. The data also offer the producer and researchers an effective and fast method to characterize and identify the poly(butylenes adipate-co-terephthalate).  相似文献   

4.
The mineral lewisite, (Ca, Fe, Na)2(Sb, Ti)2O6(O, OH)7, an antimony-bearing mineral, has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals, including bindheimite, stibiconite, and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm?1 with a shoulder at 507 cm?1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356, and 400 cm?1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm?1, with a distinct shoulder at 3542 cm?1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200–3500 cm?1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as (Ca, Fe2+, Na)2(Sb, Ti)2(O, OH)7 xH2O.  相似文献   

5.
Polarized far infrared reflectance measurements from 20 to 330 cm?1 have been made on the organic superconductor (TMTSF)2ClO4. The feature in the reflectance at 28 cm?1 has been studied as a function of temperature and applied magnetic field. Our results suggest that this feature is associated with a coupled electron-phonon mode rather than a pseudogap due to fluctuational superconductivity as has been suggested by others. In addition, a Kramers-Kronig analysis of the reflectance indicates that there is a concentration of oscillator strength above 100–150 cm?1.  相似文献   

6.
A flashlamp-pumped tunable dye laser has been used to investigate the a-X band system of PbO. Spectra with resolution adequate for rotational analysis were obtained by exciting a-X photoluminescence with the laser operating at a bandwidth of 0.2 cm?1. The (3,1) and (4,1) bands have been rotationally analyzed, providing the rotational constants B3 = 0.2389 ± 0.0002 cm?1 and B4 = 0.2374 ± 0.0002 cm?1 for the a state. Observation of P, Q, and R branch structure confirms the assignment of the a state as a Hund's case (c), Ω = 1 state of PbO. Calculated combination defects having positive algebraic sign support the presence of a b(0?) state approximately 350 cm?1 above the a(1) state.  相似文献   

7.
Single-crystal W-band (95 GHz) electron paramagnetic resonance (EPR) studies have been performed at 20 K and at room temperature on a tetragonal Mn(III) compound with potential application as a building block for high-spin clusters. The observed EPR spectra correspond to an anisotropic high-spinS = 2 ground state and have been attributed to equivalent centers related by four-fold symmetry. Accurate values for the spin Hamiltonian parameters were obtained from the analysis of the data at both temperatures. At 20 K the contribution of fourth-order zero-field splitting terms was shown to be significant, with parameter values B 4 0 = 0.0009(3) cm?1, B 4 2 = 0.0006(2) cm?1 and B 4 4 = 0.0017(3) cm?1, to be considered together with the second-order parametersD = ?1.1677(7) cm?1 andE= ?0.0135(6) cm?1.  相似文献   

8.
GaP(001) cleaned by argon-ion bombardment and annealed at 500°C showed the Ga-stabilized GaP(001)(4 × 2) structure. Only treatment in 10?5 Torr PH3 at 500°C gave the P-stabilized GaP(001)(1 × 2) structure. The AES peak ratio PGa is 2 for the (4 × 2) and 3.5 for the (1 × 2) structure. Cs adsorbs with a sticking probability of unity up to 5 × 1014 Cs atoms cm?2 and a lower one at higher coverages. The photoemission measured with uv light of 3660 Å showed a maximum at the coverage of 5 × 1014 atoms cm?2. Cs adsorbs amorphously at room temperature, but heat treatment gives ordered structures, which are thought to be reconstructed GaP(001) structures induced by Cs. The LEED patterns showed the GaP(001)(1 × 2) Cs structure formed at 180°C for 10 h with a Cs coverage of 5 × 1014 atoms cm?2, the GaP(001)(1 × 4) Cs formed at 210°C for 10 hours with a Cs coverage of 2.7 × 1014 atoms cm?2, the GaP(001)(7 × 1) and the high temperature GaP(001)(1 × 4), the latter two with very low Cs content. Desorption measurements show three stability regions: (a) between 25–150°C for coverages greater than 5 × 1014 atoms cm?2, and an activation energy of 1.2 eV; (b) between 180–200°C with a coverage of 5 × 1014 atoms cm?2, and an activation energy of 1.8 eV; (c) between 210–400°C with a coverage of 2.7 × 1014 atoms cm?2, and an activation energy of 2.5 eV.  相似文献   

9.
High-resolution vibrational electron energy-loss spectra of CO on an Ni(110) surface were studied at 300 K with the in-situ combination of LEED, Auger electron spectroscopy and work-function change measurement. The observed peaks are at 436 cm?1, 1855 cm?1 (shifting to 1944 cm?1 with increasing coverage) and at 1960 cm?1 (shifting to 2016 cm?1 with increasing coverage). The experimental results indicate that CO is adsorbed non-dissociatively at all coverages. Three adsorbed states of CO have been found. At fractional CO coverages less than θ ~ 0.9 where the disordered adsorbed structure dominates, CO is adsorbed in two inequivalent sites (short- and long-bridge sites) at random with its axis oriented perpendicular to the surface. At high coverages (θ > 0.9) where the (2 × 1) structure develops, our results indicate that the adsorbed CO molecules may occupy the distorted long-bridge sites forming zig-zag chains which lie essentially in the troughs of the (110) surface.  相似文献   

10.
Abstract

The FTIR and FT Raman spectra of benzylidene aniline, and o-hydroxybenzylidene o-hydroxyaniline compounds in the solid state in the wavenumber (1800-200 cm?1) are recorded. An assignment for nearly all fundamentals are proposed. Comparison of the spectra of trans stilbene and benzylidene aniline reveals that v N-Ph stretch for the latter compound is situated at 1368 cm?1 in the IR spectra with medium intensity. for o-hydroxybenzylidene o-hydroxyaniline, the stretching modes v N-Ph, and v C-Ph are observed at 1356 and 1226 cm?1 respectively. the two v O-Ph are observed as intense bands in the IR spectra at 1245 and 1278 cm?1, respectively. the FTIR spectra of the o-hydroxybenzylidene o-hydroxyaniline complexes with Cu(II) and Ni(II) metal ions are also recorded and assigned.  相似文献   

11.
The diffusion constants for C and O adsorbates on Pt(111) surfaces have been calculated with Monte-Carlo/Molecular Dynamics techniques. The diffusion constants are determined to be DC(T)=(3.4 × 10?3e?13156T)cm2s?1 for carbon and DO(T) = (1.5×10?3 e?9089T) cm2 s?1 for oxygen. Using a recently developed diffusion model for surface recombination kinetics an approximate upper bound to the recombination rate constant of C and O on Pt(111) to produce CO(g) is found to be (9.4×10?3 e?9089T) cm2 s?1.  相似文献   

12.
We present measurements of the solar neutrino capture rate on metallic gallium in the Soviet-American gallium experiment (SAGE) over a period of slightly more than half the 22-year solar cycle. A combined analysis of 92 runs over the twelve-year period from January 1990 until December 2001 yields a capture rate of 70.8 ?5.2 +5.3 (stat) ?3.2 +3.7 (sys) SNU for solar neutrinos with energies above 0.233 MeV. This value is slightly more than half the rate predicted by the standard solar model, 130 SNU. We present the results of new runs since April 1998 and analyze all runs combined by years, months, and bimonthly periods beginning in 1990. A simple analysis of the SAGE results together with the results of other solar neutrino experiments gives an estimate of (4.6±1.2)× 1010 neutrinos cm?2 s?1 for the flux of the electron pp neutrinos that reach the Earth without changing their flavor. The flux of the pp neutrinos produced in thermonuclear reactions in the Sun is estimated to be (7.6 ± 2.0) × 1010 neutrinos cm?2 s?1, in agreement with the value of (5.95±0.06)×1010 neutrinos cm?2 s?1 predicted by the standard solar model.  相似文献   

13.
MoN and MoO molecules produced in a hollow cathode discharge have been trapped in Ne, Ar, and Kr matrices at 4.2 and 13 K and investigated by optical spectroscopy. Bands attributed to MoN were identified in the red and blue spectral regions and assigned by comparison with gas phase results to the A4πX4Σ? (a) and B4Σ → X4Σ? (a) transitions, respectively. The ground state of Mo14N has been identified as 4Σ? with ωe = 1040 cm?1 in an Ar matrix. Absorptions assigned to MoO in the red spectral region form the (0-0) and (1-0) bands of at least one electronic transition, but could not definitely be correlated with the gas phase results. The ground state vibrational frequency for Mo16O in an Ar matrix is 893.5 cm?1. Additionally, Mo2 absorptions centered at 19 305 cm?1 were shown to be part of a vibrational progression with an average spacing of 181 cm?1.  相似文献   

14.
The parallel band ν6(A2) of C3D6 near 2336 cm?1 has been studied with high resolution (Δν = 0.020 – 0.024 cm?1) in the infrared. The band has been analyzed using standard techniques and the following parameters have been determined: B″ = 0.461388(20) cm?1, DJ = 3.83(17) × 10?7 cm?1, ν0 = 2336.764(2) cm?1, αB = (B″ ? B′) = 8.823(12) × 10?4 cm?1, βJ = (DJ ? DJ) = 0, and αC = (C″ ? C′) = 4.5(5) × 10?4 cm?1.  相似文献   

15.
Abstract

2,2′-Biimidazole complexes of MoO2 +2, MoO2 + and UO2 +2 have been prepared and characterized by elemental analysis, conductance; and 1H NMR, IR and electronic spectra. Two types of complexes have been identified. Those obtained from slightly acidic solutions have the formulae MoO2 (H2bim)Cl2.2H2O 1, UO2(H2bim) (Ac)2 2 and UO2(H2bim)Cl2.2H2O 3; whereas those from alkaline solutions have the formulae Mo2O4(Hbim)2.2H2O 4, and MO2(Hbim)2 (M = Mo(VI) 5, U(VI) 6). The infrared spectra of these complexes show characteristic biimidazole frequencies in the 3200–2500, 1550–1000 and 750 cm?1 regions as well as metal oxygen double bonds in the 900 cm?1 region. The stoichiometries of the acetate complex has been confirmed from 1H NMR signal ratios of bimidazole to acetate protons at 7.3 and 2.3 ppm, respectively. The electronic spectrum of molybdenum(V) complex showed d-d transition band at ?13,500 cm?1 in accord with that reported for copper (d9) imidazole complexes; as well as peaks due to charge transfer bands at 30,000–26,000 cm?1 Peaks assignable to BIM → U(VI) were located at ?26,600 cm?1. The most probable structures of these complexes have been suggested.  相似文献   

16.
Abstract

Novel iron(II) complex of 2,4,6-triphenylbenzenethiolate (tpbt) was synthesized by ligand exchange reaction of (Et4N)2[FeII(S-t-Bu)4] with tpbt-H. The complex shows absorption maxima at 277 nm (36500 M?1cm?1) and 367 nm (22800 M?1 cm?1), and Fe2+/Fe3+ redox potential at-0.78 V vs SCE in acetonitrile. While in tetrahydrofuran solution, the complex is found to be unstable and form a Fe(II) complex with low coordination number.  相似文献   

17.
The terahertz-subterahertz spectra of the complex permittivity and dynamic conductivity of polycrystalline (TMTSF)2ClO4 and (TMTSF)2PF6 samples are measured quantitatively. The spectra of (TMTSF)2ClO4 have absorption lines at frequencies of 7 and 30 cm?1. The obtained temperature dependences of the line parameters in the range 5–300 K cast some doubt on the earlier concept of their phonon origin. An excitation is detected at temperatures below 20 K in the frequency range near 30 cm?1, and its nature is related to the activation of a transverse acoustic phonon caused by the folding of the Brillouin zone due to the ordering of noncentrosymmetrical anions below 20 K. An increase in the carrier relaxation rate is found in this temperature range, which indicates a close relation between the electron and phonon subsystems in (TMTSF)2ClO4. Sings of additional low-energy excitations that should manifest themselves at frequencies below 1–2 cm?1 are detected. (TMTSF)2PF6 containing centrosymmetrical anions has no absorption lines in the frequency range 3–20 cm?1 and the temperature range 5–300 K.  相似文献   

18.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

19.
An accurate near-equilibrium potential energy surface (PES) for CNC+ is constructed based on a high-level composite ab initio method. By combining explicitly correlated all-electron CCSD(T)-F12b with scalar relativistic effects and higher order correlation up to coupled cluster theory with singles, doubles, triples and quadruples (CCSDTQ) we achieve convergence in the wavenumbers of the fundamentals to ca. 1 cm?1. Rovibrational energies are calculated in a variational approach and vibrational term energies and rotational constants are in excellent agreement with available experimental data. Accurate values for centrifugal distortion constants of CNC+ in different vibrational states are predicted. Especially the centrifugal distortion constants in the vibrational ground state of D0 = 0.563 · 10?6 cm?1 and H0 = 0.188 · 10?10 cm?1 should be superior to experimentally derived values. Reassignments of some experimentally observed transitions are suggested based on a comparison of experimental and calculated term differences. The bending part of the PES appears to be almost quartic and the band origin of the bending vibration is predicted at 94.2 cm?1. Absolute line intensities are calculated for various transitions in CNC+. For the bending vibration, an intensity is predicted that is three orders of magnitude smaller than for the antisymmetric stretching vibration.  相似文献   

20.
Polycarbonate (Makrofol‐N) thin films were irradiated with protons (3 MeV) under vacuum at room temperature with the fluence ranging from 1×1014 to 1×1015 protons cm?2. The change in surface morphology, optical properties, degradation of the functional groups, and crystallinity of the proton‐irradiated polymers were investigated with atomic force microscopy (AFM), UV‐VIS, and Fourier‐transform infrared (FTIR) spectroscopy, and X‐ray diffraction (XRD) techniques, respectively. AFM shows that the root mean square (RMS) roughness of the irradiated polycarbonate surface increases with the increment of ion fluence. The UV‐VIS analysis revealed that in Makrofol‐N the optical band gap decreased by 30% at highest fluence of 1×1015 protons cm?2. The band gap can be correlated to the number of carbon atoms, M, in a cluster with a modified Robertson's equation. The cluster size in the proton‐irradiated Makrofol‐N increased from 112 to 129 atoms with the increase of fluence from 1×1014 to 1×1015 protons cm?2. FTIR spectra of proton (3 MeV) irradiated Makrofol‐N showed a strong decrease of almost all absorption bands at about 1× 1014 protons cm?2. However, beyond a higher critical dose an increase in intensity of almost all characteristic bands was noticed. The appearance of a new peak at 3,500 cm?1 (‐OH groups) was observed at the higher fluences in the FTIR spectra of proton‐irradiated polycarbonate. XRD measurements showed an increase of full width at half maximum (FWHM) and the average intermolecular spacing of the main peak, which may be due to the increase of chain scission and the introduction of ‐OH groups in the proton irradiated polycarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号