首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Breaks induced in purified DNA by 334-nm ultraviolet (UV) radiation are enhanced 30 times when 2-thiouracil (s2Ura) is present during aerobic irradiation. This enhancement by s2Ura is maximally effective at a concentration of about 1 m M. Anoxic irradiation reduces the s2Ura-enhanced breakage by 90%, indicating a Type II photosensitization. Benzoate, glycerol, diazabicyclo[2.2.2.]octane (DABCO) and histidine all inhibit formation of s2Ura photosensitized breaks, unlike diethylenetriaminepenta-acetic acid (DETAPAC) and catalase, which do not. The relationships between the concentration of DABCO. benzoate and histidine and their protection against induction of single strand breaks (SSBs) were similar, with little inhibition below 10 m M and maximal inhibition near 0.1 M for all compounds. Irradiation of the DNA-s2Ura mixture dissolved in D2O instead of H2O enhanced the rate of induction of SSBs in DNA by 334-nm light almost five times. Addition of superoxide dismutase (40, 80 and 200 μg/ml) decreased the rate of induction of breaks in DNA by 334-nm radiation plus s2Ura (in H2O) by about 40%. Boiled superoxide dismutase had no effect.  相似文献   

2.
Abstract— An action spectrum for the immediate induction in DNA of single-strand breaks (SSBs, frank breaks plus alkali-labile sites) in human P3 teratoma cells in culture by monochromatic 254-, 270-, 290-, 313-, 334-, 365-, and 405-nm radiation is described. The cells were held at +0.5C during irradiation and were Iysed immediately for alkaline sedimentation analysis following the irradiation treatments. Linear fluence responses were observed over the fluence ranges studied for all energies. Irradiation of the cells in a D2O environment (compared with the normal H2O environment) did not alter the rate of induction of SSBs by 290-nm radiation, whereas the D2O environment enhanced the induction of SSBs by 365- and 405-nm irradiation. Analysis of the relative efficiencies for the induction of SSBs, corrected for quantum efficiency and cellular shielding, revealed a spectrum that coincided closely with nucleic acid absorption below 313 nm. At longer wavelengths, the plot of relative efficiency vs . wavelength contained a minor shoulder in the same wavelength region as that observed in a previously obtained action spectrum for stationary phase Bacillus subtilis cells. Far-UV radiation induced few breaks relative to pyrimidine dimers, whereas in the near-UV region of radiation, SSBs account for a significant proportion of the lesions relative to dimers, with a maximum number of SSBs per lethal event occurring at 365-nm radiation.  相似文献   

3.
Abstract— A Xenon-chloride excimer laser emitting energy at 308 nm was used to induce single-strand breaks (SSBs, frank breaks plus alkali-labile lesions as assayed by alkaline sucrose sedimentation techniques) in purified DNA from Bacillus subtilis . A fluence response study and a peak pulse intensity study were performed. At a pulse energy of 0.1 mJ/pulse, the radiation induced SSBs in a linear fashion (91 SSB/108 Da per MJ/m2) to a maximum exprimental fluence of 1.28 MJ/m2. The pulse intensity study showed that there were no significant changes in DNA breakage (105 SSB/108 Da) between 2.93 times 109 and 5.86 times 1011 W/m2 (0.11 and 22.0 mJ/pulse) at a constant total fluence of 1.1 MJ/m2 (27000 mJ dose). This study has verified and extended previous work by quantifying the yield of SSBs induced in DNA by this laser radiation.  相似文献   

4.
Abstract— We have studied the influence of the heavy metal ions Ag+ and Hg2+ on the photoinactivation and photodimerization of transforming DNA and of bacteriophage. The rate of inactivation of Haemophilus influenzae transforming DNA by ultraviolet (UV) radiation was enhanced by a factor of 30 when it was complexed with Ag+. This enhancement was correlated with a comparable increase in the rate of thymine dimerization. In contrast, mercuric ions led to a reduction in the rates of both inactivation and dimerization. When we examined the effects of these metal ions on the photobiology of bacteriophage, we again found that Ag+ enhanced and Hg2+ reduced the rate of ultraviolet inactivation. These results demonstrate that heavy metals may be useful tools for studying the photochemistry and photobiology of nucleic acids.  相似文献   

5.
Monkey kidney cells (CV-1) grown for 4 h in the presence of 0.1 m M 4-thiouridine (s4Urd) incorporate this photoactivable uridine analog in their RNA. A minor, 5–8%, thiolated RNA fraction can be isolated from bulk RNA by affinity chromatography. This RNA fraction contains 1.5–2.5 s4Urd residues per 100 nucleotides and exhibits a broad chain length distribution ranging from 700 to 7000 nucleotides. It is essentially of nuclear origin and amounts to 30% of the RNA synthesized during exposure of cells to s4Urd. Under the same s4Urd labeling conditions, no thiolated pyrimidine residues have been detected in DNA.
Irradiation with 365 nm light (45 kJ/m2) of the cells immediately after s4Urd exposure triggers long-term inhibition of DNA, RNA and protein synthesis accompanied by a linear decline (50% in 2 days) in the total cell mass of cultured cells. In contrast, exposure to s4Urd alone results in moderate but reversible inhibitory effects. The available data suggest that s4Urd-induced photolesions in newly synthesized RNA such as RNA-RNA cross-links as well as RNA-protein bridges are directly involved in impairment of essential cellular functions.  相似文献   

6.
Abstract— Escherichia coli strain RT8 hemA8 [blocked in biosynthesis of δ-aminolevulinic acid (δ-ALA), and unable to manufacture porphyrins unless exogenously supplied with δ-ALA] is inactivated more efficiently by monochromatic 334- and 405-nm radiations if the cells are grown with δ-ALA supplementation. The fiuence enhancement factor for δ-ALA sensitization is larger for light at 405 nm than at 334 nm. Both irradiation conditions (plus or minus δ-ALA) showed prominent oxygen enhancement ratios, which were also larger at 405 nm than at 334 nm. At 334 nm, δ-ALA supplementation did not affect the accumulation of DNA breaks, while at 405 nm, the induction of DNA breaks doubled for cells supplemented with δ-ALA. Rubidium leakage caused by 405-nm radiation occurred at a smaller fiuence in cells supplemented with higher concentrations of δ-ALA than in cells supplemented with a lower concentration. The results suggest that (1) porphyrin derivatives may have a role in cell killing by near-UV radiations, and (2) damage to cytomembranes may be a critical lesion produced by these events, whereas DNA breakage may not.  相似文献   

7.
Abstract— From the rates of cyclobutyl dipyrimidine (Pyr < > Pyr) formation and the ratio of inactivation of transforming or phage DNA caused by direct (254 nm) or sensitized (1.0 M acetone, 313 nm; 0.02 M acetophenone, 334 nm) irradiation, we conclude that Thy < > Pyr and Cyt < > Pyr are equally lethal, and that they are repaired with equal efficiency by the host cell. Not all the damage formed by photosensitized irradlation can be photoenzymatically repaired, especially when acetone is the sensitizer. We found no compelling evidence for photosensitized interstrand cross-links or sensitizer-DNA addition products for the fluence range used in these studies (< 106 Jm-2); moreover, strand breakage can account for only a part of the non-photorepairable damage. We suggest that a fraction of the damage may be due to Pyr < > Pyr isomers other than the cis, syn type usually formed in native DNA by far-UV light.  相似文献   

8.
Abstract— Yeast cells are inactivated by treatment with hematoporphyrin and light. The inactivation, which is mediated by singlet oxygen (1O2), is enhanced by the presence of phosphate and chloride. Neither phosphate nor chloride has any influence on the yield of 1O2. Possible mechanisms for the enhancement are briefly discussed.  相似文献   

9.
Abstract— Site-specific DNA damage caused by 334-nm radiation in the presence of the rare Escherichia coli base 4-thiouridine was investigated in vitro by detecting the sites of the termination of DNA synthesis with irradiated M13 phage DNA used as a template. Single-strand breakage was also examined. The results indicate that 334-nm radiation at very low fluences in the presence of 4-thiouridine induces termination of strand synthesis at thymine base sites and at the base immediately prior to thymine. Termination at these sites was diminished by treatment with hot piperidine. Strand cleavage by piperidine treatments was observed preferentially at the guanine site, but only after irradiation at much larger fluences. It is hypothesized that at low fluences 4-thiouridine forms photoadducts with thymine that block DNA synthesis, while at high fluences the guanine site is damaged via oxygen species.  相似文献   

10.
Abstract— Irradiation (λmax 447 nm; 58.5 W m-2) of a microsomal membrane fraction of corn coleoptiles for 5 min in the presence of the in vivo concentration of riboflavin inactivates the tonoplast-type H+-ATPase. This inhibition is O2-dependent, is enhanced in D2O and suppressed by NaN3, indicating participation of singlet molecular oxygen in the inactivating mechanism. Besides singlet oxygen, the superoxide anion (O2-) is generated during irradiation, which obviously has no effect on the H+-pumping activity. However, in the presence of superoxide dismutase (SOD), O2- is transformed into H2O2 which causes an additional strong inhibition of H+. ATPase activity. This inhibition can be increased by ethylenediaminetetraacetic acid (EDTA), which is known to be an electron donor of the excited flavin molecule. In contrast, catalase prevents the H2O2-mediated photoinactivation of the H+ -ATPase. The light dependent inactivation of H+-transport does not occur if reduced glutathion (GSH) is added prior to or after irradiation. These results indicate that the blue light mediated inhibition of the H+-ATPase is mediated by singlet oxygen and H2O2 which oxidize essential SH-groups of the enzyme into disulfides. Reduction of the formed disulfides by GSH restores the activity of the enzyme.  相似文献   

11.
Abstract— When Escherichia coli cells were irradiated by UVA in the presence of 6-mercaptopurine (6-MP) or 2-thiouracil (S2Ura), two kinds of repair-deficient strains of recA and uvrA were killed more efficiently than the parental wild-type strain having normal repair capacities. In addition, these agents with UVA exposure greatly induced the incidence of mutations in the uvrA strain as compared with the wild-type strain but not the uvrA strain. Furthermore, the induction of expression of umuDC genes was investigated in two Salmonella typhimurium strains, TA1S35 and TA1538, carrying a pSK1002 plasmid. In these systems, it is easy to measure β-galactosidase activities for the induced activities of SOS responses. These agents with UVA exposure also induced expression of the umuDC genes. These results suggest that 6-MP and S2Ura with UVA induce DNA damage which is repairable by the excision repair mechanism.  相似文献   

12.
Abstract— Using toluidine blue, a potent photosensitizer with a 1O2 dominated mechanism in yeast cell inactivation, it was found that addition of ascorbate to the sensitizer-cell mixture during illumination enhanced the inactivation. The enhancement required the presence of oxygen in the reaction mixture. The same enhancement was observed with methylene blue and thionine but not with xanthenes (Rose Bengal and eosin Y). The consumption of O2 and ascorbate seemed coupled in the enhancement. From the observation that the presence of ascorbate for a very short time (1 s) in the reaction mixture was enough to exhibit the same enhancement, it was concluded that the ascorbate enhancement processes are probably initiated in bulk medium, not intracellularly. The ascorbate enhancement may be a combined consequence of the high electron-accepting property of triplet toluidine blue and the strong tendency of ascorbate to act as an electron donor. The role of oxygen was not specified whether it was directly involved in the photoinactivation of cells. Addition of N J appeared to suppress the photoinacti-vation only in the higher fluence region where ascorbate had been consumed. Thus the ascorbate enhancement seems to occur under low fluence conditions and may probably be independent of the singlet oxygen mechanism.  相似文献   

13.
Abstract— Upon irradiation with ultraviolet light the isoflavonoid phytoalexins phaseollin, 3,6a, 9-trihydroxypterocarpan, glyceollin, tuberosin and pisatin, but not medicarpin, brought about inactivation ofglucose–6-phosphate dehydrogenase in an in vitro assay system. Photoinactivation of the enzyme by photoactivated pisatin in air-saturated solutions was hardly affected by singlet oxygen quenchers such as NaN3, bovine serum albumin, histidine or methionine. Neither addition of the hydroxyl radical scavengers mannitol, Na-benzoate and ethanol nor the presence of catalase or supcroxide dismutase protected the enzyme against photoinactivation, suggesting that OH, H2O2 and O2 are not the reactive oxygen species involved. However, the free radical scavenger S-(2-amino-ethyl)isothiouronium bromide hydrobromide (AET) protected the enzyme against inactivation by photoactivated pisatin. Direct evidence for the generation of free radicals was obtained by ESR measurements of solutions of phaseollin, pisatin and medicarpin in hexane irradiated with ultraviolet light in the presence or absence of O2. Phaseollin produced the most stable free radicals, whereas medicarpin hardly gave rise to free radical formation; pisatin took a somewhat intermediate position by producing a strong ESR signal which, however, decayed rather quickly. Photodegradation of all phytoalexins, except for medicarpin, was accompanied with loss of fungitoxicity, as shown in thin-layer chromatographic bioassays, and formation of new products.
These results indicate free radical formation as the causative process for photoinactivation of enzymes by photoactivated isoflavonoid phytoalexins.  相似文献   

14.
Abstract— Maximum chemiluminescence in a system containing 6-hydroxydopamine (6-OHDA) and H2O2 required the addition of Fe2+:EDTA, oxygen, and lucigenin. In this system luminescence was strongly inhibited by catalase (91% inhibition) or 50 m M mannitol (83%), whereas superoxide dismutase or ascorbate did not significantly change the reaction rate. In the absence of lucigenin, 50 m M mannitol (78%), catalase (76%), or ascorbate (73%) inhibited strongly, while superoxide dismutase inhibited by 60%. Removing EDTA from the lucigenin-containing system caused a 79% decrease in luminescence, while the substitution of desferoxamine for EDTA decreased luminescence by 55%. In the presence of desferoxamine plus EDTA the luminescence increased by 30% in comparison with that seen with EDTA alone. Luminescence in the system containing 6-hydroxydopamine, H2O2, Fe2+:EDTA and lucigenin required the presence of oxygen (93% inhibition anaerobically), consistent with a mechanism involving reductive oxygenation of the lucigenin. It is concluded that luminescence in the presence of lucigenin involves a substantial contribution from H2O2 and Fe2+ mediated by a mannitol-sensitive intermediate (conceivably Fenton-derived hydroxyl radicals). In the absence of lucigenin, superoxide and an ascorbate-labile component are additional important participants in the process.  相似文献   

15.
Strains of Escherichia coli that lack 4-thiouridine (4Srd) are killed by monochromatic 334 nm UV light (UV) less efficiently than their wild-type parents, which contain 4Srd. Oxygen enhancement ratios (OER) at 10% survival are 3.3 for a strain that possesses 4Srd, and 2.6 for one that lacks 4Srd. Single-strand breaks in DNA caused by 334 nm UV accumulate more than twice as fast in the wild-type strains than in the strains lacking 4Srd. The results suggest that 4Srd is an important chromophore in some near-UV lethal effects. The results also suggest that the excitation energy from 334 nm UV light may be passed from RNA to DNA, resulting in single-strand breaks.  相似文献   

16.
Abstract— The reduced pyridine coenzymes NADPH and NADH produced superoxide anion("CK") from ground state molecular oxygen when irradiated by ultraviolet (UV) radiation extending from 290 to 405 nm as detected by cytochrome c reduction. Superoxide dismutase (SOD), but not catalase or heat-inactivated SOD, decreased the amount of cytochrome c reduced, indicating that O2 was responsible for the reduction of cytochrome c. Decreased oxygen tension during irradiation also inhibited production of O2. Quantum yields for the production of the anion were in the region of 10−7 to 10−9 mol per photon. These data indicate that NADH and NADPH can act as type II photosensitizers of both far-and near-UV radiation, and that the deleterious biological effects of exposure to these radiations such as erythema and dermal carcinogenesis may be mediated at least in part through the generation of O2.  相似文献   

17.
Abstract— The mechanism of inactivating action of high-power picosecond laser UV radiation (λ= 266 nm) on the λ and φX174 bacteriophages and the pBR 322 plasmid has been studied. It has been shown that at UV radiation intensities from 1011 to 1013 W/m2, inactivation of viruses and bacterial plasmids occurs mainly on account of single-strand breaks in the DNA chain unlike the case of less powerful UV radiation where the inactivation is associated with the formation of pyrimidine dimers.  相似文献   

18.
Abstract— A mutant of Chlamydomonas reinhardtii (NL–11) isolated from a wild type (137c+) was inactivated in the light in the presence of methionine at concentrations where the wild type was not inactivated. The inactivation was suppressed by either catalase or superoxide dismutase (SOD). Light-induced H2O2 formation and nitroblue tetrazolium (NBT) reduction inNL–11 were greater than those in the wild type. Methionine stimulated both the H2O2 formation and the NBT reduction inNL–11 as well as the wild type. The light-induced NBT reduction inNL–11 in the presence of methionine was partially suppressed by externally added SOD suggesting the participation of O-2. These results suggest that the hypersensitivity ofNL–11 to methionine in the light is due to stimulated formation of H2O2 and O-2.  相似文献   

19.
Abstract— The action spectrum for the oxygen-independent inactivation of native transforming DNA from Haemophilus influenzae with near-UV radiation revealed a shoulder beginning at 334 and extending to 460 nm. The presence of 0.2 M histidine during irradiation produced a small increase in inactivation at 254, 290 and 313 nm, a large increase at 334 nm and a decrease in inactivation at 365, 405 and 460 nm. Photoreactivation did not reverse the DNA damage produced at pH 7.0 at 334, 365, 405 and 460 nm, but did reactivate the DNA after irradiation at 254, 290 and 313 nm. The inactivation of DNA irradiated at 254, 290 and 313 nm was considerably greater when the transforming ability was assayed in an excision-defective mutant compared with the wild type, although DNA irradiated at 334, 365, 405 and 460 nm showed smaller differences. These results suggest that the oxygen-independent inactivation of H. influenzae DNA at pH 7 by irradiation at 334, 365, 405 and 460 nm is caused by lesions other than pyrimidine dimers.  相似文献   

20.
Abstract—It was reported previously that histidine sensitizes the genetic activity of Haemophilus influenzae transforming DNA to pure 334 nm ultraviolet light, Further measurements show that this apparent 334 nm sensitization was probably erroneous and that in fact, histidine protects DNA against inactivation by 334 nm light. This is now consistent with all previous observations that transforming DNA is protected by histidine against all near-UV wavelengths (above 320 nm) investigated.
A modified spectrum for the protection of H. influenza transforming DNA by histidine against ultraviolet light is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号