首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The use of an inexpensive pulsed laser diode (Hamamatsu picosecond light pulser PLP-01) as the excitation source for a single photon timing spectrolluorimeter with microchannel plate photomultiplier detection was dem-onstrated. The performance of the instrument was tested with two very short-lived fluorescent dyes and two pho-tosynthetic systems with wcll-defined decay characteristics. Individual fluorescence decays were analyzed by modeling with a convolution of the instrument response function to a sum of exponential decay components. Accurate fluorcscence lifetimcs of the dyes cryptocyanine (55 ps in acetone and 83 ps in ethanol) and 1,1'-diethyl-2,2'-dicarbocyanine iodide (13 ps in acetone and 26 ps in ethanol) were obtained by analysis of the decay kinetics with a single exponential component. Fits to the fluorescence decay kinetics of isolated photosystem I particles and intact cyanobacterial cells required three and four decay components. respectively. The decay kinetics of the isolated photosystem I preparation were dominated (99%) by a very fast 9 ps lifetime, reflecting the preparation's small antenna size of approximately 30 chlorophyll a . The cyanobackria showed decay components of 35 ps, 160 ps, 400 ps and 1.95 ns similar to those described previously by Mullincaux and Holzwarth ( Rinchim. Biophys. Acfa 1098 , 68–78, 1991). The performance of the pulsed laser diode as an excitation source for single photon timing is discussed in comparison with conventional sources of picosecond light pulses.  相似文献   

2.
Abstract. An overview of the reported chlorophyll a fluorescence lifetimes from green plant photosystems is presented and the problems encountered in the measurement of fluorescence lifetime using two currently available picosecond techniques are discussed.
The fluorescence intensity of spinach chloroplasts exposed to 10 ps flashes was measured as a function of time after the flash and wavelength of observation by the ultrafast Kerr shutter technique. Using a train of 100 pulses separated by 6ns and with an average photon flux per pulse of ˜2 times 1014 photons/cm2, the fluorescence intensity at 685 nm (room temperature) was found to decay with two components, a fast one with a 56 ps lifetime, and a slow one with a 220 ps lifetime. The 730 nm fluorescence intensity at room temperature decays as a single exponential with a 100 ps lifetime. The 730 nm fluorescence lifetime was found to increase by a factor of 6 when the temperature was lowered from room temperature to 90 K while the lifetime of 685 and 695 nm fluorescence were unchanged. At room temperature, the fast and slow components at 685 nm are attributed to the emission from pigment system I (PS I) and PS II, respectively. It is likely that the absolute values of lifetimes, reported here, may increase if single ps low intensity flashes are used for these measurements.  相似文献   

3.
Abstract. Under conditions that drive the reaction centers (RC's) into the "closed" state, the lifetime ( T ) of the fluorescence emitted by antenna molecules increases from 80 to 200 ps in PS I, from 300 to 600 ps in PS II, and from 200 to 500 ps in bacterial chromatophores. In Rhodopseudomonas sphaeroides strain 1760-1, the decay curve for fluorescence from the RC's has a component with T 2= 15 ps due to the bacteriochlorophyll of the RC, and a second component with T 2= 250 ps due to bacteriopheophytin.
Data on electron transfer at low temperatures and under different redox conditions are analyzed. along with the ps fluorescence kinetics. The hypothesis is discussed that electron transfer in RC's is coupled to conformation changes in the interacting molecules.  相似文献   

4.
Abstract— At 77 K the fluorescence from spinach chloroplasts excited using picosecond mode-locked laser pulses at 620 nm is made up of 5 separate kinetic components. Three of these are predominant at short wavelengths. between 650 and 690 nm, and they appear to correspond to the 3 decay phases seen at room temperature. The 2 new components. a 100 ps rise and a 3000 ps decay, characterize the longer (730–770 nm) wavelength fluorescence. The temperature dependence of the kinetic components of the long wavelength fluorescence shows that the 3000 ps decay accounts for essentially all of the large increase in fluorescence yield observed at low temperature. Furthermore, it appears that this increase does not result entirely from an increase in the fluorescence lifetime, as has been proposed. The dependences of these 2 new components (the 100 ps rise and 3000 ps decay) on emission wavelength and temperature are similar enough to suggest they have a common origin, presumably the chlorophyll pigment component C705. The amplitudes (yield/lifetime) of these 2 phases are approximately equal, and they are opposite in sign. Thus. we see evidence of time-resolved excitation transfer from those pigment molecules that absorb the 620 nm radiation to those that give rise to the long wavelength fluorescence at low temperature.  相似文献   

5.
Abstract— The decay profiles of the fluorescence of dark-adapted spinach chloroplasts (0C) excited with single 30 ps 532 nm laser pulses of varying intensities were measured with a low-jitter streak camera system. By comparing the decay profiles of the fluorescence at low and high laser fluences, i.e. in the absence and presence, respectively, of dynamic bimolecular exciton-exciton annihilation effects, the duration of such dynamic annihilation events can be estimated. A simple model suggests that the influence of bimolecular annihilation events on the fluorescence decay kinetics should disappear within a time interval corresponding to the low intensity, unimolecular lifetime of the exciton population which is subject to exciton-exciton annihilation. The low intensity fluorescence decay profiles are characterized by three to four lifetimes (Reviewed by A. R. Holzwarth, Photochem. Photobiol. 43,707–725, 1986); it is shown here that only the shortest fluorescence components are subject to exciton annihilation, since the kinetics of the fluorescence decay are influenced by annihilations only within the initial 150–200 ps time interval after the excitation pulse. The amplitudes (but not the decay kinetics) of the longer-lived fluorescence components are decreased at high levels of laser pulse excitations, suggesting that these components are derived from the shorter-lived fluorescence decay components. The implications of these results are*discussed within the contexts of current models of the fluorescence in chloroplasts.  相似文献   

6.
Abstract— The picosecond time-resolved fluorescence decay of bacteriorhodopsin (BR) was analyzed by the maximum entropy method. Results showed five distributions of lifetimes indicating at least five decay components. A wavelength-dependent study of emission decay of BR was carried out in the wavelength region from 310 to 390 nm. The decay at each wavelength was resolvable into four decay components by the discrete exponential analysis. The three short lifetime components (100 ± 20 ps, 400 ± 50 ps and 1.0 ± 0.1 ns) were independent of wavelength, whereas the longest lifetime component was wavelength dependent (varying from 4.1 ns at 310 nm to 5.7 ns at 390 nm). These results are inconsistent with the existing model of associating the fluorescence of bacteriorhodopsin with two or four lifetime components. An attempt is made to associate the five decay components with the emitting tryptophans of BR.  相似文献   

7.
Dynamic properties of the picosecond fluorescence of highly enriched reaction-center particles of photosystem I (8 - 10 chlorophylls/P700) prepared from spinach have been investigated. The number (N) of photons used to excite chlorophyll molecules per reaction center was controlled between 0.06 and 80. The 1/e lifetime was ca. 25 ps for N 1. which is much shorter than previously measured lifetimes of photosystem I particles. The initial fluorescence intensity saturated at higher excitation intensities (N ≲ 1). This was interpreted in terms of interaction and annihilation among excited chlorophyll molecules which occur almost entirely within the duration of a laser flash. The spectrum-resolved fluorescence decay was faster at 690 than at 680 nm. This implies that two kinds of antenna chlorophylls, apart from and in close proximity to P700, have different lifetimes. Upon heat treatment a component with a much longer fluorescence decay time was observed. The growth of this component upon heat treatment at increasing temperatures showed a correlation with a decrease in the amount of P700 that could be photooxidized.  相似文献   

8.
Single-photon timing measurements on flowing samples of Chlorella vulgaris and Chlamydomonas reinhardtii at low excitation intensities at room temperature indicate two main kinetic components of the fluorescence at open reaction centers (F0) of photosystem II with lifetimes of approx. 130 and 500 ps and relative yields of about 30 and 70%. Closing the reaction centers progressively by preincubation of the algae with increasing concentrations of 3-(3′,4′-dichlorophenyl)-l,l-dimethylurea (DCMU) and hydroxylamine gave rise to a slow component with a lifetime increasing from 1.4 to 2.2 ns (Fmax) The yield of the slow component increased to 65-68% of the total fluorescence yield in parallel to a decrease in the yield of the fast component to a value close to zero at the fmax-level. The 130 ps lifetime of the fast component remained unchanged. The middle component showed an increase of its lifetime from 500 to 1100 ps and of its yield by a factor of 1.5. Spacing of the ps laser pulses by 12 μs allowed us to resolve a new long-lived fluorescence component of very small amplitude which is ascribed to a small amount of chlorophyll not connected to functional antennae. The opposite dependence of the yield of the fast and the slow component on the state of the reaction centers at almost constant lifetimes is consistent with a mechanism of energy conversion in largely separately functioning photosystem II units. Yields and lifetimes of these two components are in agreement with the high quantum yield of photosynthesis. The lower lifetime limit of 1.4 ns of the slow component is assigned to the average transfer time of an excited state from a closed to a neighboring open reaction center and the increase in the lifetime to 2.2 ns is evidence for a limited energy transfer between photosystems II. Relative effects of changing the excitation wavelength from 630 to 652 nm on the relative fluorescence yields of the kinetic components were studied at the fluorescence wavelengths 682, 703 and 730 nm. Our data indicate that (i) the middle component has its fluorescence maximum at shorter wavelength than the fast component and (ii) that the antennae chlorophylls giving rise to the middle component are preferentially excited by 652 nm light. It is concluded that the middle component originates from the light-harvesting chlorophyll alb protein complexes and the major portion of the fast component from the chlorophyll a antennae of open photosystem II reaction centers.  相似文献   

9.
Abstract— Light-induced quenching of the low temperature fluorescence emission from photosystem II (PS II) at 695 nm ( F 695) has been observed in chloroplasts and whole leaves of spinach. Photosystem I (PS I) fluorescence emission at 735 nm ( F 735) is quenched to a lesser degree but this quenching is thought to originate from PS II and is manifest in a reduced amount of excitation energy available for spillover to PS I. Differential quenching of these two fluorescence emissions leads to an increase in the F 735/ F 685 ratio on exposure to light at 77 K. Rewarming the sample from -196°C discharges the thermoluminescence Z-band and much of the original unquenched fluorescence is recovered. The relationship between the thermoluminescence Z-band and the quenching of the low temperature fluorescence emission ( F 695) is discussed with respect to the formation of reduced pheophytin in the PS II reaction center at 77 K.  相似文献   

10.
Abstract— Spectra of the fluorescence lifetime and intensity of chromatophores from the wild type Rhodopseudomonas sphaeroides , from the C 71 reaction center-less mutant and of the B800–850 light harvesting pigment-protein complex have been studied by phase fluorimetry techniques at different light modulation frequencies at room and low temperature.
As already known, closed reaction centers (saturating light) are still quenchers of antenna fluorescence although with a lower efficiency than when they are opened. The fluorescence yields and lifetimes of both the C 71 mutant strain and the B800–850complex are found to increase by about 30% between room and low temperature.
The fluorescence lifetimes obtained for the C 71 strain (0.65 ns at 20C; 0.85 ns at 77 K) and for the B850 complex (1 ns at 20C; 1.3 ns at 77 K) indicate that the non-radiative deactivation pathways, in the antenna, remain important in the absence of the reaction centers even at low temperature. We suggest that these data arise from the presence of special antenna molecules which act as intrinsic quenchers of the B875 antenna fluorescence. Between room and low temperature, the fluorescence yield and lifetime of the wild type are found roughly constant. This result suggests that the energy trapping by the reaction centers is independent of the temperature. The mechanism governing the energy transfer from the antenna to the reaction centers may differ from the mechanism leading to the energy transfer within the antenna. We suggest that a partially irreversible trapping of the excitation energy, on its way to the reaction center, takes place in the vicinity of the reaction center.  相似文献   

11.
Picosecond time-resolved fluorescence of photosystem I particles isolated from Synechococcus sp. was recorded in the wavelength range from 680 nm to 736 nm for temperatures of 6°C to 42°C and - 100°C using the single-photon-timing technique. By global analysis of the data we found four contributing lifetime components at the higher temperatures (T1 ' 12 ps, T1= 35 ps, T3 ' 65 ps, T4 ' 1000 ps). We attribute T1 to an energy transfer between two pigment pools, T2 to the charge separation process in the reaction center, component T3 is assigned to aggregate and T4 to uncoupled chlorophyll emission. The corresponding decay-associated spectra are presented. We also applied a target analysis procedure to fit parameters of a kinetic model directly to the data. The resulting rate constants and species-associated spectra are discussed. The data indicate substantial spectral heterogeneity in the antenna with at least three substantially different chlorophyll pools. The overall exciton decay kinetics (by charge separation) is trap-limited.  相似文献   

12.
Abstract— The complexity of the room-temperature emission spectrum of Chlorella was investigated by a matrix analysis method. This approach revealed the presence of two independently fluorescent components in the short-wave region of the spectrum. These components, maximal at about 687 and 695 nm, appeared to correspond to the fluorescence of the bulk pigments of PS II and PS I respectively. The analysis was insensitive to the individual species within the photosystems. As such, other minor fluorescent species, usually observed at low temperatures, which presumably correspond to fluorescence from the trapping centres, did not appreciably complicate the analysis. The absorption spectra of the two photosystems were calculated from the fluorescence data. The results were similar to those that have been obtained by other workers from oxygen evolution and DCMU poisoning data but differed from those obtained by computer analysis of the absorption spectrum. Addition of reduced DCPIP was observed to reverse the increase in fluorescence yield and changes in the spectral distribution of emission taking place on poisoning the algae. The correlation between this and the catalysis of photophos-phorylation in aged or poisoned chloroplasts was noted. This correlation was tentatively interpreted as evidence for a direct interaction between the donor system and the photochemical apparatus associated with PS II, rather than with a member of the electron transport chain as is normally assumed.  相似文献   

13.
Abstract— We report the room-temperature fluorescence decay times of calf thymus DNA when native and when 16% of its guanine residues are methylated at theN–7 position. The samples were excited with single, 25 ps, 266 nm laser pulses from a frequency-quadrupled Nd: YAG laser. Fluorescence was detected with a streak camera-optical multichannel analyzer system that has a time jitter of about 2 ps. For DNA and methylated DNA we detected a major component that has a decay time of about 10 and 20 ps, respectively. A second component has a corresponding decay time of about 65 and 80 ps and makes a contribution of0–10% and20–40% depending on the transmission characteristics of the emission filter employed. In contrast, the decay time of 7-methyl GMP, which contains the same fluorophore as methylated DNA, is approximately single exponential and has a decay time of180–210 ps depending on the emission filter. The absence of a pronounced time delay between the fluorescence decay profiles of the nucleic acids and the exciting light pulse points against the formation of excited-state complexes (excimers).  相似文献   

14.
C. Phycocyanin (PC) and allophycocyanin (APC). as well as the α-subunit of PC. have been isolated from the blue-green alga (cyanobacterium). Spirulina platensis . The effects of partial thermal denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized fluorescence spectroscopy. All measurements have been performed under low photon fluxes(1013 photons/pulse cm2) to minimize singlet-singlet annihilation processes. A complex decay is obtained under most conditions, which can be fitted satisfactorily with a bi-exponential (T1=70–400 ps, T2 -1000–3000 ps) for both the isotropic and the polarized part, but with different intensities and time constants for the two decay curves. The data are interpreted in the framework of the model first developed by Teale and Dale [ Biochem. J. 116, 161 (1970)], which divides the spectroscopically different chromophores in (predominantly) sensitizing ( s ) and fluorescing ( f ), ones. If one assumes temperature dependent losses in the energy transfer from the s to the f and between f chromophores. both the biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the sf transfer. the longer one to the "free" decay of the final acceptor( s ) (= f ). The polarized part is dominated by an extremely short decay time. which is related to sf transfer, as well as to resonance transfer between the f -chromophores.  相似文献   

15.
Abstract. In this paper we review picosecond fluorescence studies of exciton dynamics in photosynthesis. We discuss some of the exciton interactions that led to artifacts in early picosecond data and outline procedures for avoiding their presence. In the case of high intensity single pulse excitation (> 1013 photons cm2), the dominant mechanism is singlet-singlet fusion, manifesting itself by a decrease in the observed lifetime and quantum efficiency of fluorescence. The manner in which excitons interact in vivo provides an indicator of the topology of the photosynthetic unit (PSU). The shape of the fluorescence quenching curve, as a function of intensity, in particular, can be used to test various models. In addition to fluorescence quenching curves, we also report the results of fluorescence decay following ps laser flashes, using an ultrafast streak camera in four types of systems: (1) organic crystal anologues, (2) chromatophores of various mutants of the photosynthetic bacteria, Rhodopseudomonas sphaeroides, (3) intact cells of the green alga, Chlorella and (4) chloroplasts of higher plants (e.g. spinach).  相似文献   

16.
The primary charge separation in photosystem (PS) I was measured on stacked pea thylakoids using the light-gradient photovoltage technique. Upon 532 nm excitation with picosecond flashes, a trapping time of 80 ± 10 ps for PS I was found, which is in close agreement with literature data. In the wavelength range between 700 nm and 717 nm the trapping time was essentially the same although there was an indication for a slight decrease. To further analyze the data we performed a spectral decomposition of PS I with Chi a and b solvent spectra. This procedure yielded bands at around 682 nm, 690 nm, 705 nm and 715 nm. According to this decomposition, a selective excitation of long-wavelength antenna pigments at wavelengths Λ > 710 nm is possible, because the direct excitation of the main 682 nm band is small compared to the excitation of the two most red-shifted bands. The invariability of the trapping time of the excitation wavelength suggests thermal equilibration of the excitation energy among all antenna pigments according to their excited state energy levels and their abundance. Hence, we conclude that trapping in PS I is essentially rate-limited by the primary charge separation much as it is the case in PS II. Then, according to our spectral decomposition in a time constant of2–3 ps is predicted for the primary charge separation in PS I.  相似文献   

17.
The chlorophyll fluorescence and the photosynthetic oxygen evolution (flash-induced oxygen yield patterns and oxygen bursts under continuous irradiation) were investigated in the thylakoid membranes with different stoichiometry and organization of the chlorophyll-protein complexes. Data show that the alteration in the organization of the photosystem II (PS II) super complex, i.e. the amount and the organization of the light-harvesting chlorophyll a/b protein complex (LHCII), which strongly modifies the electric properties of the membranes, influences both the energy redistribution between the two photosystems and the oxygen production reaction. The decrease of surface electric parameters (charge density and dipole moments), associated with increased degree of LHCII oligomerization, correlates with the strong reduction of the energy transfer from PS II to PSI. In the studied pea thylakoid membranes (wild types Borec, Auralia and their mutants Coeruleovireus 2/16, Costata2/133, Chlorotica XV/1422) with enhanced degree of oligomerization of LHCII was observed: (i) an increase of the S(0) populations of PS II in darkness; (ii) an increase of the misses; (iii) an alteration of the decay kinetics of the oxygen bursts under continuous irradiation. There is a strict correlation between the degree of LHCII oligomerization in the investigated pea mutants and the ratio of functionally active PS II alpha to PS II beta centers, while in thylakoid membranes without oligomeric structure of LHCII (Chlorina f2 barley mutant) the PS II alpha centers are not registered.  相似文献   

18.
Decay-associated emission spectra of synchronized cultures of Scenedesmusobliquus have been studied at two stages of their life cycle corresponding to the maximum and minimum of photosynthetic capacity. These decay-associated spectra comprise three kinetic components. The two components which are assigned to photosystem II show variations in their relative amplitudes depending on the life cycle of the cells. From the correlations observed in the decay-associated fluorescence spectra on the one hand and the fluorescence induction parameters on the other hand we obtained further evidence that the two photosystem II fluorescence components are directly related to the two fluorescence induction phases. This correlation supports our previous assignment of the two photosystem II fluorescence decay components of about 0.3 ns and about 0.6 ns lifetimes at the F0 level (open photosystem II reaction centres to photosystem II α units and photosystem II β units respectively. The most pronounced difference between cells at the 8th hour of the life cycle and those at the 16th hour consists in the size of the photosystem II β units which are about 30% larger for the latter. In agreement with previous studies it was found that at these two stages the photosystem I units do not differ in size.  相似文献   

19.
Abstract— Time-resolved fluorescence spectra of intact cells of red and blue-green algae Porphyridium cruentum and Anacystis nidulans were measured by means of a ps laser and a time-correlated photon counting system. Fluorescence spectra were observed successively from various pigments in the light harvesting system in the order of phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC) and chlorophyll a (Chl a ). The spectrum changes with time in the range of0–400 ps in P. cruentum and of0–1000 ps in A. nidulans . The time-resolved spectra were analyzed into components to obtain the rise and decay curve of each fluorescence component. Overall time behaviors of the sequential fluorescence emissions from various pigments can be interpreted with a decay kinetics ofexp(–2 kt ½). The rate constants of the energy transfer show that the energy transfer takes place much faster in the red alga P. cruentum than in the blue-green alga A. nidulans , particularly in the step PCAPC. Results also indicated that a special form of APC, far-emitting APC, exists in the pigment system of A. nidulans , but it does not mediate a main energy transfer from phycobilisome to Chl a.  相似文献   

20.
—Low temperature (77 K) fluorescence emission spectra of slices obtained from the peel and various layers of the pericarp were recorded for fruits which remain green or undergo color break during ripening.
Fluorescence emission peaks characteristic of the photosystem II antennae (λF 686 nm) and reaction center (λF 696 nm), as well as of the photosystem I antenna (λF 730-740 nm), were present in the peel and all parts of the green pericarp of ripe kiwi, avocado and cantaloupe, as well as in ripe tomato and tangerine after color break. The pattern of the fluorescence emission spectra of all samples except that of the kiwi fruit was similar to that obtained from green photosynthetic tissue of leaves, indicating a normal organization of the chlorophyll-containing complexes of thylakoidal membranes. This pattern is characterized by a significantly higher emission at 730-740 nm relative to that of the 696 and 686 nm peaks. In contradistinction, the fluorescence emission at 686 and 696 nm was higher than that at 730 nm in the kiwi fruit, indicating a reduction in the size of the photosystem I antenna chlorophyll. In the innermost yellowish layers of the kiwi pericarp, a further loss of this antenna occurred, as well as disorganization of the photosystem II complex. The above conclusions are suggested also by measurements of variable fluorescence kinetics.
The results presented here indicate that fluorescence spectroscopy might be used as a tool for the study of chlorophyll organization during the growth and ripening periods of fruit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号