首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The primary charge separation and electron-transfer processes of photosynthesis occur in the reaction center (RC). Isolated RCs of the green filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus were studied at room temperature by using femtosecond transient absorption spectroscopy with selective excitation. Upon excitation in the Q(Y) absorbance band of the bacteriochlorophyll (BChl) dimer (P) at 865 nm, a 7.0 +/- 0.5 ps kinetic component was observed in the 538 nm region (Q(X) band of the bacteriopheophytin (BPheo)), 750 nm region (Q(Y) band of the BPheo), and 920 nm region (stimulated emission of the excited-state of P), indicating that this lifetime represents electron transfer from P to BPheo. The same time constant was also observed upon 740 nm or 800 nm excitation. A longer lifetime (300 +/- 30 ps), which was assigned to the time of reduction of the primary quinone, Q(A), was also observed. The transient absorption spectra and kinetics all indicate that only one electron-transfer branch is involved in primary charge separation under these excitation conditions. However, the transient absorption changes upon excitation in the Soret band at 390 nm reveal a more complex set of energy and electron-transfer processes. By comparison to studies on the RCs of the purple bacterium Rhodobacter sphaeroides, we discuss the possible mechanism of electron-transfer pathway dependence on excitation energy and propose a model of the Cf. aurantiacus RC that better explains the observed results.  相似文献   

2.
X-ray structures of the Photosystem II (PSII) core revealed relatively large interpigment distances between the CP43 and CP47 antenna complexes and the reaction center (RC) with respect to the interpigment distances in a single unit. This finding questions the possibility of fast energy equilibration among the antenna and the RC, which has been the basic explanation for the measured PSII fluorescence kinetics for more than two decades. In this study, we present time-resolved fluorescence measurements obtained with a streak-camera setup on PSII core complexes from Thermosynechococcus elongatus at room temperature (RT) and at 77 K. Kinetic modeling of the RT data obtained with oxidized quinone acceptor Q(A), reveals that the kinetics are best described by fast primary charge separation at a time scale of 1.5 ps and slow energy transfer from the antenna into the RC, which results in an energy equilibration time between the antenna and the RC of about 44 ps. This model is consistent with structure-based computations. Primary radical pair formation was found to be a virtually irreversible process. Energy equilibration within the CP43 and CP47 complexes is shown to occur at a time scale of 8 ps. Kinetic modeling of the 77 K data reveals similar energy transfer time scales in the antenna units and among the antenna and the RC as at RT, respectively, 7 and 37 ps. We conclude that the energy transfer from the CP43/CP47 antenna to the RC is the dominant factor in the total charge separation kinetics in intact PSII cores.  相似文献   

3.
Abstract. Under conditions that drive the reaction centers (RC's) into the "closed" state, the lifetime ( T ) of the fluorescence emitted by antenna molecules increases from 80 to 200 ps in PS I, from 300 to 600 ps in PS II, and from 200 to 500 ps in bacterial chromatophores. In Rhodopseudomonas sphaeroides strain 1760-1, the decay curve for fluorescence from the RC's has a component with T 2= 15 ps due to the bacteriochlorophyll of the RC, and a second component with T 2= 250 ps due to bacteriopheophytin.
Data on electron transfer at low temperatures and under different redox conditions are analyzed. along with the ps fluorescence kinetics. The hypothesis is discussed that electron transfer in RC's is coupled to conformation changes in the interacting molecules.  相似文献   

4.
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) appended to C(60) were investigated. At room temperature, excitation of the porphyrin oligomer led to fast (5-25 ps) electron transfer to C(60) followed by slower (200-650 ps) recombination. The temperature dependence of the charge-separation reaction revealed a complex process for the longer oligomers, in which a combination of (i) direct charge separation and (ii) migration of excitation energy along the oligomer followed by charge separation explained the observed fluorescence decay kinetics. The energy migration is controlled by the temperature-dependent conformational dynamics of the longer oligomers and thereby limits the quantum yield for charge separation. Charge recombination was also studied as a function of temperature through measurements of femtosecond transient absorption. The temperature dependence of the electron-transfer reactions could be successfully modeled using the Marcus equation through optimization of the electronic coupling (V) and the reorganization energy (λ). For the charge-separation rate, all of the donor-acceptor systems could be successfully described by a common electronic coupling, supporting a model in which energy migration is followed by charge separation. In this respect, the C(60)-appended porphyrin oligomers are suitable model systems for practical charge-separation devices such as bulk-heterojunction solar cells, where conformational disorder strongly influences the electron-transfer reactions and performance of the device.  相似文献   

5.
Abstract— The use of an inexpensive pulsed laser diode (Hamamatsu picosecond light pulser PLP-01) as the excitation source for a single photon timing spectrolluorimeter with microchannel plate photomultiplier detection was dem-onstrated. The performance of the instrument was tested with two very short-lived fluorescent dyes and two pho-tosynthetic systems with wcll-defined decay characteristics. Individual fluorescence decays were analyzed by modeling with a convolution of the instrument response function to a sum of exponential decay components. Accurate fluorcscence lifetimcs of the dyes cryptocyanine (55 ps in acetone and 83 ps in ethanol) and 1,1'-diethyl-2,2'-dicarbocyanine iodide (13 ps in acetone and 26 ps in ethanol) were obtained by analysis of the decay kinetics with a single exponential component. Fits to the fluorescence decay kinetics of isolated photosystem I particles and intact cyanobacterial cells required three and four decay components. respectively. The decay kinetics of the isolated photosystem I preparation were dominated (99%) by a very fast 9 ps lifetime, reflecting the preparation's small antenna size of approximately 30 chlorophyll a . The cyanobackria showed decay components of 35 ps, 160 ps, 400 ps and 1.95 ns similar to those described previously by Mullincaux and Holzwarth ( Rinchim. Biophys. Acfa 1098 , 68–78, 1991). The performance of the pulsed laser diode as an excitation source for single photon timing is discussed in comparison with conventional sources of picosecond light pulses.  相似文献   

6.
Previous studies of solid-state tetracyanobenzene-based donor-acceptor complexes showed that these materials were highly susceptible to both laser and mechanical damage that complicated the analysis of their electron-transfer kinetics. In this paper, we characterize the optical properties of a pyrene/tetracyanoquinodimethane charge-transfer crystal that is much more robust than the tetracyanobenzene compounds. This donor-acceptor complex has a charge-transfer absorption that extends into the near-infrared, rendering the crystal black. We use time-resolved fluorescence and diffuse reflectance transient absorption to study its dynamics after photoexcitation. We show that the initially excited charge-transfer state undergoes a rapid, monoexponential decay with a lifetime of 290 ps at room temperature. There is no evidence for any long-lived intermediate or dark states; therefore, this decay is attributed to charge recombination back to the ground state. Fluorescence lifetime measurements demonstrate that this process becomes temperature-independent below 60 K, indicative of a thermally activated tunneling mechanism. The subnanosecond charge recombination makes this low-band-gap donor-acceptor material a poor candidate for generating long-lived electron-hole pairs.  相似文献   

7.
The spectroscopy characteristics and the fluorescence lifetime for the chloroplasts isolated from the pseudo ginseng, water hyacinth and spinach plant leaves have been studied by absorption spectra, low temperature steady-state fluorescence spectroscopy and single photon counting measurement under the same conditions and by the same methods. The similarity of the absorption spectra for the chloroplasts at room temperature suggests that different plants can efficiently absorb light of the same wavelength. The fluorescence decays in PS II measured at the natural QA state for the chloroplasts have been fitted by a three-exponential kinetic model. The three fluorescence lifetimes are 30, 274 and 805 ps for the pseudo ginseng chloroplast; 138, 521 and 1494 ps for the water hyacinth chloroplast; 197, 465 and 1459 ps for the spinach chloroplast, respectively. The slow lifetime fluorescence component is assigned to a collection of associated light harvesting Chl a/b proteins, the fast lifetime component to the react  相似文献   

8.
Transient absorption difference spectra in the Qy absorption band of bacteriochlorophyll (BChl) g and in the 670 nm absorption band of the primary acceptor A0 in membranes of Heliobacillus mobilis (Hc. mobilis) were measured at 20 K upon selective excitation at 668, 793, 810, and 815 nm with a 5 nm spectral bandwidth. When excited at 793 nm, the spectral equilibration of excitations from shorter to longer wavelength-absorbing pigments occurred within 3 ps and mostly localized at the band centered around 808 nm. When excited at 668 nm, the excitation energy transfer from the 670 nm absorbing pigment to the Qy band of BChl g took less than 0.5 ps, and the energy redistribution occurred and localized at 808 nm as in the case of the 793 nm excitation. All of the excitations were localized at the long wavelength pigment pool centered around 810 or 813 nm when excited at 810 or 815 nm. A slower energy transfer process with a time constant of 15 ps was also observed within the pool of long wavelength-absorbing pigments upon selective excitation at different wavelengths as has been observed by Lin et al. (Biophys. J. 1994, 67, 2479) when excited at 590 nm. Energy transfer from long wavelength antenna molecules to the primary electron donor P798 followed by the formation of P+ took place with a time constant of 55-70 ps for all excitations. Direct excitation of the primary electron acceptor A0, which absorbed at 670 nm, showed the same kinetic behavior as in the case when different forms of antenna pigments were excited in the Qy region. This observation generally supports the trapping-limited case of energy transfer in which the excitations have high escape probability from the reaction center (RC) until the charge separation takes place. Possible mechanisms to account for the apparent "uphill" energy transfer from the long wavelength antenna pigments to P798 are discussed.  相似文献   

9.
Abstract— Mobile electronic excited states, excitons, undergo random walks through the antenna chlorophyll arrays of photosynthetic organisms. The time interval from exciton creation, by photon absorption, until its first arrival at a reaction center (RC) is called the "first passage time" (FPT) of the random walk. A theory of exciton migration and trapping presented here predicts that the exciton lifetime, as measured from chlorophyll fluorescence decay in chromatophores or P700 complexes, is a linear function of the fractional number of quanta absorbed directly by the antenna, not by the RC. The slope of this line is the FPT, and its intercept is the exciton's lifetime as limited only by photoconversion at the RC. This photoconversion-limited lifetime is simply related to the in situ photoconversion rate constant via two parameters, each of which is experimentally accessible. It is also possible to obtain values of individual FoUrster rate constants, at least approximately, from measurements of exciton lifetime as functions of temperature and excitation wavelength. This new theory, based on lattice random walk models, receives some support from fluorescence measurements done on Rhodopseudomonas sphaeroides R26 chromatophores. In its present form the theory is only applicable to one-antenna-component systems, like Rp. sphaeroides R26 or Rhodospirillum rubrum chromatophores or P700 complexes, but should be readily extendible to multi-antenna-component systems including whole chloroplasts.  相似文献   

10.
The dynamics of fluorescence decay and charge recombination were studied in the ether-extracted photosystem I reaction center isolated from spinach with picosecond resolution over a wide time range up to 100 ns. At all temperatures from 268 to 77 K, a slow fluorescence decay component with a 30-40 ns lifetime was detected. This component was interpreted as a delayed fluorescence emitted from the singlet excited state of the primary donor P700*, which is repopulated through charge recombination that was increased by the lack of secondary acceptor phylloquinone in the sample. Analysis of the fluorescence kinetics allowed estimation of the standard free-energy difference -DeltaG between P700* and the primary radical pair (P700(+)A0(-)) state over a wide temperature range. The values of -DeltaG were estimated to be 160/36 meV at 268/77 K, indicating its high sensitivity to temperature. A temperature-dependent -DeltaG value was also estimated in the delayed fluorescence of the isolated photosystem I in which the secondary acceptor quinone was partially prereduced by preillumination in the presence of dithionite. The results revealed that the temperature-dependent -DeltaG is a universal phenomenon common with the purple bacterial reaction centers, photosystem II and photosystem I reaction centers.  相似文献   

11.
We report here our femtosecond studies of the photoreduction dynamics of the neutral radical flavin (FADH) cofactor in E. coli photolyase, a process converting the inactive form to the biologically active one, a fully reduced deprotonated flavin FADH(-). The observed temporal absorption evolution revealed two initial electron-transfer reactions, occurring in 11 and 42 ps with the neighboring aromatic residues of W382 and F366, respectively. The new transient absorption, observed at 550 nm previously in photolyase, was found from the excited-state neutral radical and is probably caused by strong interactions with the adenine moiety through the flavin U-shaped configuration and the highly polar/charged surrounding residues. The solvation dynamics from the locally ordered water molecules in the active site was observed to occur in approximately 2 ps. These ultrafast ordered-water motions are critical to stabilizing the photoreduction product FADH(-) instantaneously to prevent fast charge recombination. The back electron-transfer reaction was found to occur in approximately 3 ns. This slow process, consistent with ultrafast stabilization of the catalytic cofactor, favors photoreduction in photolyase.  相似文献   

12.
The effect of cardiolipin on the functionality of the Q(A) site of a photosynthetic reaction center (RC) was studied in RCs from the purple non-sulfur bacterium Rhodobacter sphaeroides by means of time-resolved absorbance measurements. The binding of the ubiquinone-10 to the Q(A) site of the RC embedded in cardiolipin or lecithin liposomes has been followed at different temperatures and phospholipid loading. A global fit of the experimental data allowed us to get quite reliable values of the thermodynamic parameters joined to the binding process. The presence of cardiolipin does not affect the affinity of the Q(A) site for ubiquinone but has a marked influence on the rate of P+QA(-) --> PQA electron transfer. The P+QA(-) charge recombination kinetics has been examined in liposomes made of cardiolipin/lecithin mixtures and in detergent (DDAO) micelles doped with cardiolipin. The electron-transfer rate constant increases upon cardiolipin loading. It appears that the main effect of cardiolipin on the electron transfer can be ascribed to a destabilization of the charge-separated state. Results obtained in micelles and vesicles follow the same titration curve when cardiolipin concentration evaluated with respect to the apolar phase is used as a relevant variable. The dependence of the P+QA(-) recombination rate on cardiolipin loading suggests two classes of binding sites. In addition to a high-affinity site (compatible with previous crystallographic studies), a cooperative binding, involving about four cardiolipin molecules, takes place at high cardiolipin loading.  相似文献   

13.
We report on the effects of water activity and surrounding viscosity on electron transfer reactions taking place within a membrane protein: the reaction center (RC) from the photosynthetic bacterium Rhodobacter sphaeroides. We measured the kinetics of charge recombination between the primary photoxidized donor (P(+)) and the reduced quinone acceptors. Water activity (aW) and viscosity (eta) have been tuned by changing the concentration of cosolutes (trehalose, sucrose, glucose, and glycerol) and the temperature. The temperature dependence of the rate of charge recombination between the reduced primary quinone, Q(A)(-), and P(+) was found to be unaffected by the presence of cosolutes. At variance, the kinetics of charge recombination between the reduced secondary quinone (Q(B)(-)) and P(+) was found to be severely influenced by the presence of cosolutes and by the temperature. Results collected over a wide eta-range (2 orders of magnitude) demonstrate that the rate of P(+)Q(B)(-) recombination is uncorrelated to the solution viscosity. The kinetics of P(+)Q(B)(-) recombination depends on the P(+)Q(A)(-)Q(B) <--> P(+)Q(A)Q(B)(-) equilibrium constant. Accordingly, the dependence of the interquinone electron transfer equilibrium constant on T and aW has been explained by assuming that the transfer of one electron from Q(A)(-) to Q(B) is associated with the release of about three water molecules by the RC. This implies that the interquinone electron transfer involves at least two RC substates differing in the stoichiometry of interacting water molecules.  相似文献   

14.
Abstract We have investigated the model of energy transfer between sensitizing (s) and fluorescing (f) chromophores for the αβ monomer and for the separated α and β subunits of C-phycocyanin from Anabaena variabilis using fluorescence emission spectroscopy, fluorescence excitation polarization, and picosecond-resolved fluorescence decay kinetics. The fluorescence emission maximum occurs at 640 nm for all samples. The fluorescence excitation polarization is constant ( P = 0.40) across the absorption hand for the α subunit, but it increases across the absorption band towards longer wavelength for the β subunit and the αβ monomer. The fluorescence decay kinetics exhibit two exponential lifetimes of 1.3-1.5 ns and 340-500 ps for the αβ monomer and for the α and β subunit preparations.
We attribute the change in polarization across the absorption band to energy transfer among the three chromophores in the αβ monomer and among the two chromophores in the separated β subunit. The constant, relatively high polarization in the separated a subunit, having only one chromophore, is consistent with the absence of both energy transfer and chromophore rotation. The concentration of the α subunit did not affect the decay kinetics, suggesting that the short lifetime component does not arise from aggregation of the α subunits. The biexponential decay kinetics of the α subunit cannot be explained using the sensitizing-fluorescing model. The possibility of conformational interactions is under investigation.  相似文献   

15.
Subpicosecond time-resolved absorption measurements at 77 K on two reaction center (RC) mutants of Rhodobacter capsulatus are reported. In the D(LL) mutant the D helix of the M subunit has been substituted with the D helix from the L subunit, and in the D(LL)-FY(L)F(M) mutant, three additional mutations are incorporated that facilitate electron transfer to the M side of the RC. In both cases the helix swap has been shown to yield isolated RCs that are devoid of the native bacteriopheophytin electron carrier HL (Chuang, J. I.; Boxer, S. G.; Holten, D.; Kirmaier, C. Biochemistry 2006, 45, 3845-3851). For D(LL), depending whether the detergent Deriphat 160-C or N-lauryl-N,N-dimethylamine-N-oxide (LDAO) is used to suspend the RCs, the excited state of the primary electron donor (P*) decays to the ground state with an average lifetime at 77 K of 330 or 170 ps, respectively; however, in both cases the time constant obtained from single-exponential fits varies markedly as a function of the probe wavelength. These findings on the D(LL) RC are most easily explained in terms of a heterogeneous population of RCs. Similarly, the complex results for D(LL)-FY(L)F(M) in Deriphat-glycerol glass at 77 K are most simply explained using a model that involves (minimally) two distinct populations of RCs with very different photochemistry. Within this framework, in 50% of the D(LL)-FY(L)F(M) RCs in Deriphat-glycerol glass at 77 K, P* deactivates to the ground state with a time constant of approximately 400 ps, similar to the deactivation of P* in the D(LL) mutant at 77 K. In the other 50% of D(LL)-FY(L)F(M) RCs, P* has a 35 ps lifetime and decays via electron transfer to the M branch, giving P+HM- in high yield (> or =80%). This result indicates that P* --> P(+)H(M)(-) is roughly a factor of 2 faster at 77 K than at 295 K. In alternative homogeneous models the rate of this M-side electron-transfer process is the same or up to 2-fold slower at low temperature. A 2-fold increase in rate with a reduction in temperature is the same behavior found for the overall L-side process P* --> P(+)H(L)(-) in wild-type RCs. Our results suggest that, as for electron transfer on the L side, the M-side electron-transfer reaction P* --> P(+)H(M)(-) is an activationless process.  相似文献   

16.
Absorption, fluorescence excitation, emission, and hole-burning (HB) spectra were measured at liquid helium temperatures for the PS I-CP43' supercomplexes of Synechocystis PCC 6803 grown under iron stress conditions and for respective trimeric PS I cores. Results are compared with those of room temperature, time-domain experiments (Biochemistry 2003, 42, 3893) as well as with the low-temperature steady-state experiments on PS I-CP43' supercomplexes of Synechococcus PCC 7942 (Biochim. Biophys. Acta 2002, 1556, 265). In contrast to the CP43' of Synechococcus PCC 7942, CP43' of Synechocystis PCC 6803 possesses two low-energy states analogous to the quasidegenerate states A and B of CP43 of photosystem II (J. Phys. Chem. B 2000, 104, 11805). Energy transfer between the CP43' and the PS I core occurs, to a significant degree, through the state A, characterized with a broader site distribution function (SDF). It is demonstrated that the low temperature (T = 5 K) excitation energy transfer (EET) time between the state A of CP43' (IsiA) and the PS I core in PS I-CP43' supercomplexes from Synechocystis PCC 6803 is about 60 ps, which is significantly slower than the EET observed at room temperature. Our results are consistent with fast (< or =10 ps) energy transfer from state B to state A in CP43'. Energy absorbed by the CP43' manifold has, on average, a greater chance of being transferred to the reaction center (RC) and utilized for charge separation than energy absorbed by the PS I core antenna. This indicates that energy is likely transferred from the CP43' to the RC along a well-defined path and that the "red antenna states" of the PS I core are localized far away from that path, most likely on the B7-A32 and B37-B38 dimers in the vicinity of the PS I trimerization domain (near PsaL subunit). We argue that the A38-A39 dimer does not contribute to the red antenna region.  相似文献   

17.
Two new donor-acceptor copolymers that consist of an enantiomerically pure oligo(p-phenylene vinylene) main chain with dangling perylene bisimides have been synthesized by using a Suzuki cross-coupling polymerization. Absorption and circular dichroism spectroscopy revealed that the transition dipole moments of the donor in the main chain and the dangling acceptor moieties of the copolymers are coupled and in a helical orientation in solution, even at elevated temperatures. A strong fluorescence quenching of both chromophores indicates an efficient photoinduced charge transfer after photoexcitation of either donor or acceptor. The formation and recombination kinetics of the charge-separated state were investigated in detail with femtosecond and near-steady-state photoinduced absorption spectroscopy. The charge-separated state forms within 1 ps after excitation, and recombination occurs with a time constant of 45-60 ps, both in solution and in the solid state. These optical characteristics indicate a short distance and appreciable interaction between the electron-rich donor chain and the dangling electron-poor acceptor chromophores.  相似文献   

18.
Photoinduced electron-transfer dynamics of self-assembled donor-acceptor dyads formed by axial coordination of zinc naphthalocyanine, ZnNc, and perylenediimide (PDI) bearing either pyridine (py) or imidazole (im) coordinating ligands were investigated. The PDIim unit was functionalized with tert-octylphenoxy groups at the bay positions, which avoid aggregation providing solubility, to examine the effect of the bulky substituents at the bay positions on the rates of electron-transfer reactions. The combination between zinc naphthalocyanine and perylenediimide entities absorbs light over a wide region of the visible and near infrared (NIR) spectrum. The binding constants of the self-assembled ZnNc:PDIpy (1) and ZnNc:PDIim (2) in toluene were found to be 2.40 × 10(4) and 1.10 × 10(5) M(-1), respectively, from the steady-state absorption and emission measurements, indicating formation of moderately stable complexes. The geometric and electronic calculations by using an ab initio B3LYP/6-311G method showed the majority of the highest occupied frontier molecular orbital (HOMO) on the zinc naphthalocyanine entity, while the lowest unoccupied molecular orbital (LUMO) was on the perylenediimide entities, suggesting that the charge-separated states of the supramolecular dyads are ZnNc˙(+):PDI˙(-). The electrochemical results suggest the exothermic charge-separation process via the singlet states of both ZnNc and PDI entities in nonpolar toluene. Upon coordination of perylenediimide to ZnNc, the main quenching pathway involved charge separation via the singlet-excited states of ZnNc and PDIs. Clear evidence of the intramolecular electron transfer from the singlet-excited state of ZnNc to PDI within the supramolecular dyads in toluene was monitored by the femtosecond laser photolysis by observing the characteristic absorption band of the PDI radical anion (PDI˙(-)) and the ZnNc radical cation (ZnNc˙(+)) in the visible and NIR regions. The rate constants of charge-separation (k(CS)) processes of the self-assembled dyads 1 and 2 were determined to be 4.05 × 10(10) and 1.20 × 10(9) s(-1), respectively. The rate constant of charge recombination (k(CR)) and the lifetime of charge-separated states (τ(CS)) of dyad 1 were determined to be 2.34 × 10(8) s(-1) and 4.30 ns, respectively. Interestingly, a slower charge recombination (2.20 × 10(7) s(-1)) and a longer lifetime of the charge separated state (45 ns) were observed in dyad 2 in nonpolar toluene by utilizing the nanosecond transient measurements. The absorption in a wide section of the solar spectrum and the high charge-separation/charge-recombination ratio suggest the usefulness of the self-assembled zinc naphthalocyanine-perylenediimide dyads as good photosynthetic models.  相似文献   

19.
Fluorescence lifetime and anisotropy measurements were made on the red fluorescent protein (DsRed) from tropical coral of the Discosoma genus, both at single-molecule and bulk concentrations. As expected from previous work, the fluorescence lifetime of DsRed in solution is dependent on laser power, decreasing from an average fluorescence lifetime in the beam of about 3.3 ns at low power (3.5 ns if one extrapolates to zero power) to about 2.1 ns at 28 kW/cm2. At the single-molecule level, exciting with 532 nm, 10 ps laser pulses at 80 MHz repetition rate, DsRed particles entering the laser beam initially have a lifetime of about 3.6 ns and convert to a form having a lifetime of about 3.0 ns with a quantum yield of photoconversion on the order of 10(-3) (calculated in terms of photons per DsRed tetramer). The particles then undergo additional photoconversion with a quantum yield of roughly 10(-5), generating a form with an average lifetime of 1.6 ns. These results may be explained by rapid photoconversion of one DsRed monomer in a tetramer, which acts as an energy transfer sink, resulting in a lower quantum yield for photoconversion of subsequent monomers. Multiparameter correlation and selective averaging can be used to identify DsRed in a mixture of fluorophores, in part exploiting the fact that fluorescent lifetime of DsRed changes as a function of excitation intensity.  相似文献   

20.
The photoluminescence (PL) properties of oligofluorenes with 2-ethylhexyl group in 9, 9' position in solution and as thin films were investigated by time-resolved techniques at both room temperature and 77 K. The fluorescence lifetimes of the oligomers decrease with chain length. The lifetimes tau follow the relation tau=386+808(1/n) (ps) where n is the number of fluorene units in the oligomer. Concentration and laser excitation energy dependences of PL spectra of the oligofluorenes are also given. Phosphorescence was observed for oligofluorenes in the frozen matrix of MTHF at 77 K. The lifetime of phosphorescence increases with increasing molecular length. Similar emission bands were observed for oligofluorenes with a central ketogroup. A lifetime analysis clearly reveals that the "green emission" of the oligomers free of ketogroups results from a phosphorescence with lifetime tau of 3 ms while the green emission from the keto-oligomer is a fluorescence from a charge transfer pi-pi* level of tau=8 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号