首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In regard to earth‐abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt‐substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low‐temperature solvolysis of molecular heterobimetallic Co4?xZnxO4 (x=1–3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self‐supported water‐oxidation electrocatalyst, which was observed by HR‐TEM on FIB lamellas of the EPD layers. The Co‐rich hydroxide‐oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours.  相似文献   

2.
The interaction of zinc(II) complex of N,N′‐bis(guanidinoethyl)‐2,6‐pyridinedicarboxamide (Gua) with DNA was studied by CD spectroscopy and agarose gel electrophoresis analysis. The results indicate that the DNA binding affinity of Zn2+‐Gua is stronger than that of Gua and the Zn2+‐Gua can promote the cleavage of phosphodiester bond of supercoiled DNA under a physiological condition, which is ~106 times higher than DNA natural degradation. The hydrolysis pathway was proposed as the possible mechanism for DNA cleavage promoted by the Zn2+‐ Gua. The acceleration is due to cooperative catalysis of the zinc cation center and the functional groups (bisguanidinium groups).  相似文献   

3.
An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α‐amino acids and has been demonstrated to be effective in vanadium‐catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc‐catalyzed asymmetric aldol reaction, a versatile bottom‐up route to make complex functional compounds. Zinc, the second‐most abundant transition metal in humans, is an environment‐friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal‐free asymmetric catalysis, that is, α‐amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet‐attached α‐amino acids were applied as chiral ligands together with catalytic ZnII centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H‐bonding effects; this resembles the role of a huge and rigid substituent.  相似文献   

4.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

5.
6.
Aqueous zinc (Zn) batteries have been considered as promising candidates for grid‐scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc–organic battery with a phenanthrenequinone macrocyclic trimer (PQ‐MCT) cathode, a zinc‐foil anode, and a non‐aqueous electrolyte of a N,N‐dimethylformamide (DMF) solution containing Zn2+. The non‐aqueous nature of the system and the formation of a Zn2+–DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from ?70 to 150 °C.  相似文献   

7.
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N=[H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius ≈ 1.5 nm) rotation inside the primary aggregate (radius <3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.  相似文献   

8.
Nanocrystals of undoped and nickel-doped zinc oxide (Zn1?x Ni x O, where x?=?0.00?C0.05) were synthesized by the coprecipitation method. Crystalline size, morphology, and optical absorption of prepared samples were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and UV?Cvisible spectrometer. XRD and SEM studies revealed that Ni-doped ZnO crystallized in hexagonal wurtzite structure. Doping of ZnO with Ni2+ was intended to enhance the surface defects of ZnO. The incorporation of Ni2+ in place of Zn2+ provoked an increase in the size of nanocrystals as compared to undoped ZnO. Crystalline size of nanocrystals varied from 10 to 40?nm as the calcination temperature increased. Enhancement in the optical absorption of Ni-doped ZnO indicated that it can be used as an efficient photocatalyst under visible light irradiation. Optical absorption measurements indicated a red shift in the absorption band edge upon Ni doping. The band gap value of prepared undoped and Ni-doped ZnO nanoparticles decreased as annealing temperature was increased up to 800?°C.  相似文献   

9.
Pd2+‐Exchanged graphite oxide (GO) serves as a precatalyst for the formation of Pd‐nanoparticles which are then deposited on the highly functionalized carbonaceous support. This versatile, air‐stable, and ligand‐free system was applied successfully to Suzuki? Miyaura couplings of some aryl chlorides and to the Mizoroki? Heck as well as the Sonogashira reaction showing relatively high activities and good selectivities. Like with other ligand‐free supported systems, the reaction proceeded dominantly by a homogeneous mechanism, but attack of an aryl iodide to Pd‐nanoparticles can be excluded as substantial contribution to the entire catalytic process. Beside its straightforward preparation and its stability in air, the system combines the advantages of both homogeneous and heterogeneous catalysis.  相似文献   

10.
The synthesis of stable porous materials with appropriate pore size and shape for desired applications remains challenging. In this work a combined experimental/computational approach has been undertaken to tune the stability under various conditions and the adsorption behavior of a series of MOFs by subtle control of both the nature of the metal center (Co2+, Cu2+, and Zn2+) and the pore surface by the functionalization of the organic linkers with amido and N‐oxide groups. In this context, six isoreticular MOFs based on T‐shaped ligands and paddle‐wheel units with ScD0.33 topology have been synthesized. Their stabilities have been systematically investigated along with their ability to adsorb a wide range of gases (N2, CO2, CH4, CO, H2, light hydrocarbons (C1–C4)) and vapors (alcohols and water). This study has revealed that the MOF frameworks based on Cu2+ are more stable than their Co2+ and Zn2+ analogues, and that the N‐oxide ligand endows the MOFs with a higher affinity for CO2 leading to excellent selectivity for this gas over other species.  相似文献   

11.
The exploitation of new and active earth‐abundant metal catalysts is critical for sustainable chemical production. Herein, we demonstrate the design of highly efficient, robust, and reusable ZnII‐bipyridine‐based metal–organic framework (MOF) catalysts for the intramolecular hydroamination of o‐alkynylanilines to indoles. Under similar conditions homogeneous catalytic systems mainly provide hydrolysate. Our results prove that MOFs support unique internal environments that can affect the direction of chemical reactions. The ZnII‐catalyzed hydroamination reaction can be conducted without additional ligands, base, or acid, and is thus a very clean reaction system with regard to its environmental impact.  相似文献   

12.
采用高分子自组装ZnO纳米线及其形成机理   总被引:11,自引:3,他引:8  
介绍了一种能在各种晶面的硅衬底上制备垂直于衬底取向生长的ZnO纳米线阵列的新方法. 该法采用高分子络合和低温氧化烧结反应, 以聚乙烯醇(PVA)高分子材料作为自组装络合载体来控制晶体成核和生长. 首先通过PVA侧链上均匀分布的极性基团羟基(—OH)与锌盐溶液中的Zn2+离子发生络合作用, 然后滴加氨水调节络合溶液pH值为8.5±0.1, 使络离子Zn2+转变为Zn(OH)2, 再将硅片浸入此溶液中, 从而在硅衬底表面得到较均匀的Zn(OH)2纳米点, 随后在125 ℃左右Zn(OH)2纳米点通过热分解转化为ZnO纳米点, 其后在420 ℃烧结过程中衬底上的ZnO纳米点在PVA高分子网络骨架对其直径的限域下逐渐取向生长成ZnO纳米线, 并且烧结初期PVA碳化形成的碳通过碳热还原ZnO为Zn, 再在氧气氛中氧化为ZnO的方式在纳米线顶端形成了催化活性点, 促进了纳米线顶端ZnO的吸收. 烧结后碳逐渐氧化被完全去除. 采用场发射扫描电镜(FE-SEM)、透射电镜(TEM, HR-TEM)和X射线衍射(XRD)对纳米线的分析结果表明, ZnO纳米线在硅衬底上分布均匀, 具有六方纤锌矿结构, 并且大多沿[0001]方向择优取向生长, 直径为20~80 nm, 长度可从0.5至几微米. 提出了聚合物控制ZnO结晶和形貌的网络骨架限域模型以解释纳米线的生长行为.  相似文献   

13.
氧化锌(ZnO)是一种重要的化工原料, 超临界水热合成法制备纳米ZnO的第一步是锌盐与碱或水发生水解反应生成Zn(OH)2, 后者接着脱水生成ZnO. 以Zn(CH3COO)2为原料, 直接和超临界水(SCW)反应能够制备纳米级的ZnO颗粒, 但对反应机理的探讨较少. 本研究利用分子动力学模拟超临界条件下Zn(CH3COO)2水解反应过程中的结构和能量变化, 发现Zn(CH3COO)2在SCW中容易聚集成无定形的团簇, 1个Zn2+平均和5个CH3COO-和1个H2O配位, 形成6配位的八面体结构. 处于Zn(CH3COO)2团簇和SCW界面的Zn2+能够和更多的H2O配位. 水解反应后系统的势能降低, 同时伴随Zn(CH3COO)2团簇结构的改变. 反应产物OH-分布在Zn(CH3COO)2团簇内部, 富集Zn2+, 而CH3COOH则分布在SCW中. 本文的工作为超临界水热合成的反应过程提供了基本的理论依据.  相似文献   

14.
Zn2+ inhibits the action of several of the caspases and thus may act as a regulator of apoptosis. Reversal of this inhibition is one possible approach for the development of apoptosis‐based therapies. Few studies describe the molecular details of the Zn2+–caspase interaction, the understanding of which is essential for the success of any therapeutic strategies. Enzyme kinetics and biophysical studies have shown that the inhibition is of mixed type with prominent (ca. 60 % of inhibition) uncompetitive characteristics and an IC50 of 0.8 μM under the conditions used. Fluorescence‐based techniques confirmed that, during inhibition in the sub‐micromolar range, substrate binding remains unaffected. A new zinc binding site composed of the catalytic histidine and a nearby methionine residue, rather than the catalytic histidine and cysteine dyad, is proposed based on the experimental observations. DFT models were used to demonstrate that the proposed site could be the preferred inhibitory zinc binding site.  相似文献   

15.
Rechargeable aqueous zinc‐ion batteries are attractive because of their inherent safety, low cost, and high energy density. However, viable cathode materials (such as vanadium oxides) suffer from strong Coulombic ion–lattice interactions with divalent Zn2+, thereby limiting stability when cycled at a high charge/discharge depth with high capacity. A synthetic strategy is reported for an oxygen‐deficient vanadium oxide cathode in which facilitated Zn2+ reaction kinetic enhance capacity and Zn2+ pathways for high reversibility. The benefits for the robust cathode are evident in its performance metrics; the aqueous Zn battery shows an unprecedented stability over 200 cycles with a high specific capacity of approximately 400 mAh g?1, achieving 95 % utilization of its theoretical capacity, and a long cycle life up to 2 000 cycles at a high cathode utilization efficiency of 67 %. This work opens up a new avenue for synthesis of novel cathode materials with an oxygen‐deficient structure for use in advanced batteries.  相似文献   

16.
A series of modified montmorillonites including Zn2+ loaded montmorillonite (Zn/MMT), Ce3+ loaded montmorillonite (Ce/MMT) and Zn2+‐Ce3+ loaded montmorillonites (Zn‐Ce/MMT) were prepared by an ion‐exchange reaction, and characterized using X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), and scanning electron microscopy (SEM). The specific surface areas, zeta potentials and antibacterial activity of the modified montmorillonites were also investigated. Zinc and cerium were proved to be present as bivalent zinc state and trivalent cerium state in the modified montmorillonites. For the modified montmorillonites, the d001 basal spacings increased and the particles were formed of irregular shapes. The antibacterial activity of the modified montmorillonites was enhanced with the increase of specific surface areas and zeta potentials, and Zn2+‐Ce3+ loaded montmorillonites displayed obvious synergistic antibacterial effect. When Zn/Ce atomic ratio was 1.24, the Zn‐Ce/MMT showed high antibacterial efficiency and broad‐spectrum antibacterial activity, possessing the MIC against Escherichia coli, Staphylococcus aureus, Candida albicans and Mucor of 1500, 1000, 2000 and 3000 mg·L?1, respectively.  相似文献   

17.
The Zn inactive class of glyoxalase I (Glo1) metalloenzymes are typically homodimeric with two metal‐dependent active sites. While the two active sites share identical amino acid composition, this class of enzyme is optimally active with only one metal per homodimer. We have determined the X‐ray crystal structure of GloA2, a Zn inactive Glo1 enzyme from Pseudomonas aeruginosa. The presented structures exhibit an unprecedented metal‐binding arrangement consistent with half‐of‐sites activity: one active site contains a single activating Ni2+ ion, whereas the other contains two inactivating Zn2+ ions. Enzymological experiments prompted by the binuclear Zn2+ site identified a novel catalytic property of GloA2. The enzyme can function as a Zn2+/Co2+‐dependent hydrolase, in addition to its previously determined glyoxalase I activity. The presented findings demonstrate that GloA2 can accommodate two distinct metal‐binding arrangements simultaneously, each of which catalyzes a different reaction.  相似文献   

18.
The modulation of strain on the electronic properties of ZnO:P is investigated by density functional theory calculations. The variation of formation energy (Ef) and band structure with strains ranging from ?0.1 to 0.1 are considered. Although both the conduction band minimum (CBM) and the valence band maximum of ZnO are antibonding states, the CBM is more sensitive to strain, reducing the band gap with an increase in strain. P‐substituted O (PO) defects show poor p‐type conductivity due to a smaller Ef and lower lying acceptor levels as a consequence of lattice expansion. The Ef of P‐substituted Zn (PZn) defects decreases under tension, owing to the release of strong repulsive stress induced by excess electrons from PZn. The donor energy band of PZn broadens under tensile strain, which benefits n‐type conductivity. For Zn vacancies (VZn) and PZn–2VZn complexes, the distances between the O atoms around VZn are so large that repulsive and attractive interactions become weak, which results in an easy release of the strain. We herein present for the first time that the Ef values of VZn and PZn–2VZn complexes decrease under both tension and compression, or in the high‐pressure rock‐salt phase. Under a strain of 0.1 the PZn–2VZn complex shows the smallest Ef. Under ?0.07 strain the wurtzite/rock‐salt phase transition occurs and the direct band gap becomes an indirect one. The variation of band structures in the rock‐salt phase is similar to that in the wurtzite phase. Consequently, the p‐type conductivity of ZnO:P can be improved with an increase in solubility of PZn–2VZn or VZn defects.  相似文献   

19.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

20.
Glutathione (GSH), in addition to serving as a redox buffer in cellular environment, has been suggested as a modulator in metal regulation and homeostasis by metallothioneins (MTs). The interactions of MTs with both GSH and its oxidized form GSSG have been shown to govern the direction of metal transfer. Common methods for the determination of zinc release from MTs modulated by GSH/GSSG either involve radioactive species or enzymes or are labor‐intensive. In this study, upon separation of Zn2+ from the reaction mixture of MTs and GSH with a centrifugal filter membrane, differential pulse voltammetry (DPV) was used for the Zn2+ quantification. The same approach is extended to the studies of metal transfer between Zn7MT with a GSH/GSSG mixture and that between Zn7MT with GSSG. The concomitant conversion between the free thiol and disulfide bonds was confirmed with UV‐vis spectrophotometry. The results demonstrate that GSSG, GSH, and the GSH/GSSG mixture all modulate zinc release from Zn7MT. The percentage of zinc release increases in the order of GSH, GSSG, and the GSH/GSSG mixture. The new approach is demonstrated to be well suited for investigation of redox regulation of MT and its reaction with zinc‐containing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号