首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 236 毫秒
1.
The structure of soluble polyelectrolyte complexes composed of heparin (Hep) and partially aminoacetalized poly(vinyl alcohol) (PVAA) in aqueous solution was investigated by light scattering. The pH was fixed at 3.2 while the ionic strength and mixing ratio were varied. At high ionic strength (0.5), polyelectrolyte complexes were not formed owing to the screening effect of simple salts on polyion charges. At low ionic strength (0.005), polyelectrolyte complexes formed were stable and dispersed when either the polycation or the polyanion was in great excess, whereas the complexes became unstable and coagulated when the concentrations of polycation and polyanion approached each other. At intermediate ionic strength (0.1), when PVAA was in excess, complex formation was similar to that at low ionic strength (0.005); but with an excess of Hep, polyelectrolyte complexes with similar structure (i.e., roughly spherical with average diameters about 2,700 Å) were formed over a wide range of mixing ratio. This observation is of interest in connection with the physiological activity of Hep in vivo.  相似文献   

2.
The synthesis of some water-insoluble synthetic polyelectrolyte complexes formed between a weak polyanion and a strong polycation was followed. Sodium salts of poly(acrylic acid) and of some copolymers of acrylic acid with itaconic acid or maleic acid were used as anionic polymers. Cationic polyelectrolytes with quaternary ammonium salt groups in the main chain were used as strong polycations. The cationic polymers were different as concerns both the content of quaternary nitrogen atoms and the degree of branching. The complex formation was followed by the variation of the conductivity and of the specific viscosity of the reaction medium as well as by the turbidimetric titration versus the unit molar ratio polyanion/polycation. The deviation of the endpoint from stoichiometry was influenced mainly by the structure of the complementary polymers and by their molecular weights. The greater the structural differences, the higher the endpoint deviation from stoichiometry. Only insoluble polyelectrolyte complexes (PEC) were obtained in all the polyanion/polycation systems taken into account. The PECs were separated and characterized by elemental and spectral analyses as compared with the complementary polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A reaction between poly(4-vinylpyridiniumchloride) and poly(sodiumphosphate) in the presence and absence of NaCl and NaBr salts was studied in aqueous solution by conductometry. The interaction of polycation and polyanion gave insoluble polyelectrolyte complex which contained polycation and polyanion in unit mole ratio in a salt-free solution. A deviation from stoichiometry was observed at high polyion concentration and in the presence of NaCl and NaBr salts. The resultant complex showed swelling property in different solvent mixtures. A maximum degree of swelling was obtained in the solvent mixture of NaBr + water and NaBr + water + acetone. Furthermore, polyelectrolyte complex sorbed salts from aqueous electrolyte solutions. The sorption of salts increased with increasing salt concentration. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Colloids were obtained from non-stoichiometric polyelectrolyte complexes with two polysaccharides of opposite charge: chitosan and dextran sulfate (DS) as the polycation and polyanion, respectively. The complexes were elaborated by a one-shot addition of the polymer in default to the one in excess. The colloids were positively or negatively charged according to the nature of the polymer in excess. Dynamic light scattering (DLS) demonstrated that particles were formed at a very early stage in the complexation process. The consumption of the excess polyelectrolyte was monitored with a dye assay specific for dextran sulfate (toluidine blue) or chitosan (orange II). From these experiments, two different mechanisms of colloidal PEC formation were evidenced, according to the nature of the polymer in excess. On adding chitosan to DS in excess, regular consumption of the polyanion was observed at a constant stoichiometry, in the 1.5 to 1.85 range (sulfate residues for one glucosamine group), according to the molar mass of the polycation. When DS was added to chitosan in excess, the overall stoichiometry varied from ca. 6 (glucosamine residues for one sulfate group) down to 1 as the charge molar mixing ratio R=n+/n- decreased from 20 to 1. The existence of various mechanisms, according to the nature of the polymer in excess, could be attributed to the differences in chemical reactivity (strong vs low) of the ion in excess and the conformation and flexibility of the macromolecular chains related to their electrostatic potential.  相似文献   

5.
Formation of colloids based on polyelectrolyte complexes (PECs) was mainly studied with synthetic polyelectrolytes. In this study, we describe the elaboration of positively charged PEC particles at a submicrometer level obtained by the complexation between two charged polysaccharides, chitosan as polycation and dextran sulfate (DS) as polyanion. The complexes were elaborated by dropwise addition of default amounts of DS to excess chitosan. Quasi-elastic light scattering was used to investigate in detail the influence of the characteristics of components (chain length, degree of acetylation) and parameters linked to the reaction of complexation (molar mixing ratio, ionic strength, concentration in polymer) on the sizes and polydispersity of colloids. Chain length of chitosan is the major parameter affecting the dimensions of the complexes, high molar mass chitosans leading to the largest particles. Variations of hydrodynamic diameters of PECs with the molar mass of chitosan are consistent with a mechanism of particle formation through the segregation of the neutral and then hydrophobic blocks of the polyelectrolyte complexed segments. Resulting particles display probably a structure constituted by a neutral core surrounded by a chitosan shell ensuring the colloidal stabilization. Such a structure was evidenced by measurements of electrophoretic mobilities revealing that the positive charge of particles was decreasing with pH, in relation with the neutralization of excess glucosamine hydrochloride moieties.  相似文献   

6.
Stoichiometric and nonstoichiometric polyion complex films were prepared from poly(sodium p-styrene sulfonate) and poly(diallyl dimethyl ammonium chloride). X-ray photoelectron spectroscopy revealed that the ionic groups in the complex are more ionized than in each component polymer. Fluorescence measurements showed that the complex had a main emission peak around 300 nm, whereas the peak for its original polyanion occurred at 324 nm. With the monomer and excimer peaks of the phenyl rings taken to be at 294 and 324 nm, respectively, the ratio of excimer to monomer emission intensities increased in proportion to the mole fraction of polyanion in the observed range 0.44–0.59. There was no discontinuity at the stoichiometric composition. Furthermore, the change in peak position shows that the local aggregation of phenyl groups in the polyanion was destroyed by complexation with the polycation through Coulombic forces. These results, together with the visual observation of the transparency of the films, mean that the mixing between polyanion and polycation chains in the polyion complex is on the molecular level and that this polymer alloy is miscible.  相似文献   

7.
We have investigated the activity of counter-ions at 60 degrees C through the osmotic coefficient K in solutions of anionic and cationic polyelectrolyte complexes of variable compositions. For excess of polyanion in the complexes (molar fraction of polycation f < 0.5), K increases as the polyanion is neutralized by the polycation (f getting closer to 0.5). By contrast, for an excess of polycation (f > 0.5), K stays constant or even slightly decreases as the polycation is getting neutralized by the polyanion. This asymmetric behavior depending on the charge of the complexes indicates that the globally negatively charged complexes are homogeneous and can be treated as a single polyelectrolyte of reduced linear charge density. On the other hand, the positively charged complexes show a micro-phase separation between neutral fully compensated microdomains and domains where the excess polycation is locally segregated. These two different microstructures are reminiscent of the coacervation and segregation regimes observed at higher concentrations and salinities, and also of polyelectrolyte complexes with oppositely charged surfactants. This interpretation is supported by two simple predictive models.  相似文献   

8.
Although never emphasized and increasingly used in organic electronics, PEDOT-PSS (poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)) layer-by-layer (lbl) film construction violates the alternation of polyanion and polycation rule stated as a prerequisit for a step-by-step film buildup. To demonstrate that this alternation is not always necessary, we studied the step-by-step construction of films using a single solution containing polycation/polyanion complexes. We investigated four different systems: PEDOT-PSS, bPEI-PSS (branched poly(ethylene imine)-poly(sodium 4-styrene sulfonate)), PDADMA-PSS (poly(diallyl dimethyl ammonium)-PSS), and PAH-PSS (poly(allylamine hydrochloride)-PSS). The film buildup obtained by spin-coating or dipping-and-drying process was monitored by ellipsometry, UV-vis-NIR spectrophotometry, and quartz-crystal microbalance. The surface morphology of the films was characterized by atomic force microscopy in tapping mode. After an initial transient regime, the different films have a linear buildup with the number of deposition steps. It appears that, when the particles composed of polyanion-polycation complex and complex aggregates in solution are more or less liquid (case of PEDOT-PSS and bPEI-PSS), our method leads to smooth films (roughness on the order of 1-2 nm). On the other hand, when these complexes are more or less solid particles (case of PDADMA-PSS and PAH-PSS), the resulting films are much rougher (typically 10 nm). Polycation/polyanion molar ratios in monomer unit of the liquid, rinsing, and drying steps are key parameters governing the film buildup process with an optimal polycation/polyanion molar ratio leading to the fastest film growth. This new and general lbl method, designated as 2-in-1 method, allows obtaining regular and controlled film buildup with a single liquid containing polyelectrolyte complexes and opens a new route for surface functionalization with polyelectrolytes.  相似文献   

9.
聚电解质复合物 (Polyelectrolytecomplex)是指带有相反电荷的两种聚电解质之间通过库仑力而结合形成的一类特殊的高分子材料[1 ] .由于生物体内的很多反应以及生物化学合成过程都是通过高分子复合物进行的 ,因此对高分子间相互作用及其聚集体形成的研究受到了人们的极大重视 .目前研究得较多的体系是聚苯乙烯衍生物 ,如Ioplex 1 0 1即由聚苯乙烯磺酸钠和聚氯化乙烯基苄基三甲基铵反应而得[2 ,3] .本文报道了不同电荷密度及相对分子质量的聚苯乙烯 co 4 乙烯基吡啶的硫酸甲酯盐 ,与不同分子质量的聚丙烯酸钠…  相似文献   

10.
Associative phase separation (complex coacervation) in a mixture of oppositely charged polyelectrolytes can lead to different types of (inter-)polyelectrolyte complexes (soluble micelles, macroscopic precipitation). In a previous report [Langmuir 2004, 20, 2785-2791], we presented a model for the electrostatic free energy change when (weakly charged) polyelectrolyte forms a homogeneous complex phase. The influence of ionization of the polymer on the electrostatic free energy of the complex was incorporated but the influence of complex density neglected. In the present effort, cylindrical cells are assumed around each polyelectrolyte chain in the complex, and on the basis of the Poisson-Boltzmann equation, the electrostatic free energy is calculated as a function of the complex density. After combination with Flory-Huggins mixing free energy terms and minimization of the total free energy, the equilibrium complex density is obtained, for a given ratio of polycations to polyanions in the complex. The analysis is used in an example calculation ofpolyelectrolyte film formation by alternatingly applying a polycation and a polyanion solution. The calculation suggests that the often observed exponential growth of a polyelectrolyte film when the polymer is weakly charged has a thermodynamic origin: the polyelectrolyte complex shifts repeatedly between two equilibrium states of different densities and compositions. However, when the polyelectrolytes are strongly charged the difference in the compositions between the two equilibrium states is very small, and exponential growth by an absorption mechanism is no longer possible.  相似文献   

11.
We studied the immobilization of a mycelium (Aspergillus niger) using the working hypothesis as follows: (a) when polycation was added to the cell suspension, a few parts of it would bind on the surface of a hypha, allowing to gather the hyphae in part but not all; (b) upon further addition of polyanion, such a gathering of the hyphae is tightly bunched by the polyelectrolyte complex (PEC) which is resulted from the remaining polycation; (c) as a result, a mycelium with partially bunched hyphae can be obtained. Potassium poly(vinyl alcohol) sulfate and trimethylammonium glycol chitosan iodide [6-O-(2-hydroxyethyl-2-(trimethylamonio)-chitosan iodide) were used as the polyanion and the polycation, respectively. The optical and electron microscopic analyses showed that our immobilized cell contains many of PEC-bunched hyphae. The sedimentation rate increased with the weight ratio of PEC to dry cells and leveled off at the weight ratio larger than 0.5. The gluconic acid production from glucose was studied by a semi-large scale (1 l) cultivation of the imobilized and free cells using a jar fermentor. It was found that an apparent specific activity of the immobilized cells for glucose oxidation becomes 1.44 times that of the free cells even at a high cell density of 40 g/l.  相似文献   

12.
The conformational behavior of oppositely charged polyelectrolytes on alumina in solutions was investigated by means of excimer fluorescence and electron spin resonance spectroscopy using maleic acid-propene copolymer labeled with pyrene or TEMPO. It was found that the ability of the polyanion at the surface for conformational rearrangements is strongly influenced by the constraints of the adsorbed state that restrict its complexation. Polyelectrolyte complexes (PEC) formed by mixing of the oppositely charged polyelectrolytes exhibited extreme coiling due to the screening of the charged groups. The polyelectrolytes undergo spreading during the adsorption process due to the electrostatic attraction. Surface binding can irreversibly limit the flexibility for the reconformation process to a great extent. It is also shown here that a flatter adsorbed state could be reached by sequential adsorption of polyanion and polycation than could be reached by the direct adsorption of the polyelectrolyte complex itself.  相似文献   

13.
This work aims to provide a basic understanding of the water dispersibility of a 1:1 stoichiometric polyelectrolyte complex (SPEC) in water in the absence of low-molecular-weight salts. We studied the complexation of a linear polyanion, potassium poly(vinyl alcohol sulfate) (KPVS), with a cationic polyelectrolyte nanogel (CPENG) composed of a lightly cross-linked copolymer of N-isopropylacrylamide and 1-vinylimidazole, in an aqueous salt-free solution (pH 3 and 25 °C), as a function of the molar mixing ratio (Mmr) of anionic to cationic groups. Also studied for comparison was the complexation of KPVS with poly(diallyldimethylammonium chloride) (PDDA), which is a standard reaction in colloid titration. Turbidimetric and conductometric measurements were used in combination of dynamic light scattering (DLS). An abrupt increase of turbidity curve and a break of conductivity curve were observed at Mmr =1 when KPVS was added to the CPENG or PDDA solution, indicating the formation of SPEC. All the complexes formed at Mmr ≤ 1 were water-dispersible and hence characterized by DLS. The CONTIN analysis of DLS data showed that (i) an increase of Mmr causes a decrease of the hydrodynamic radius (R(h)) of the nanogel complex particle but (ii) the R(h) of the PDDA complex remains unchanged at Mmr < 0.8. Taking these into account, we discussed the conductometric results in terms of the random model (RM) and all-or-none model (AONM) in polyelectrolyte complex formations. It was found that KPVS and PDDA yield a water-dispersible SPEC particle at each Mmr, accompanying the uptake of counterions (K(+) and Cl(-)) by the complex. This uptake amount was about 7% of the stoichiometric release of the counterions. In the nanogel system, a complete release of the counterions was observed at Mmr < 0.2 at which one or two KPVS chains were bound to a CPENG particle, but further KPVS binding led to about 20% of the counterion uptake to maintain electroneutrality. Thus, we suggest that the counterion uptake becomes a key factor to understand the water dispersibility of SPEC particles.  相似文献   

14.
Structural properties and the topology of polyelectrolyte complexes (PECs) formed in solution have been investigated under different conditions by Monte Carlo simulations using a coarse-grained model. The extension of individual polyions has been characterized by their radius of gyration, whereas the composition of the complexes has been investigated by their net charge and their internal topological structure by a novel analysis describing how the shorter polycations link to monomers of the longer polyanion. Conditions have been found at which the polyanion and a given number of polycations form distinguishable complexes differing in (i) the polyanion conformation and (ii) the fraction of polycations being in extended and collapsed states. Thus, at equilibrium, these PECs display a stepwise variation of the degree of intrachain disproportionation within the polyanion (also referred to as intrachain segregation), concomitant with the interchain disproportionation of the polycations, which is in agreement with previous theoretical predictions. The coexistence of the different polyelectrolyte complex structures appears, generally, at mixing ratios close to but different from charge equivalence and, as a consequence, broad polyelectrolyte size distributions are commonly obtained.  相似文献   

15.
《Electroanalysis》2005,17(7):613-618
For polyelectrolyte complex between cationic surfactant and polyanion, the adsorptive voltammetry at carbon paste electrode using an electroactive cationic surfactant was examined. The adsorption state of the cationic surfactant in the complexes at CPE was estimated from the half‐height width of the oxidation waves. The half‐height width for poly(styrene sulfonate) was independent of the molecular weight, and was same as that for poly(vinyl sulfate). The half‐height width for heparin was broad and different from that of the vinyl polyanions. According to the analysis by Frumkin isotherm, the interaction between cationic surfactants was attractive in heparin complex at CPE, however, in the vinyl polyanion complexes at CPE the interaction was non‐cooperative as that predicted with the Langmuir isotherm. In spite of the same adsorption state, the concentration dependency of the peak current for poly(styrene sulfonate) was quite different from that for poly(vinyl sulfate). The concentration dependence indicated the reactive property of each polyanion on the association with the cationic surfactant in aqueous solution.  相似文献   

16.
 The sorption of solved organic molecules such as p-nitrophenol or dyes on previously formed nanoparticles based on polyelectrolyte/micelle complexes or polycation/polyanion complexes was studied. It could be shown that the sorption capability strongly depends on the structure and properties of the complex particles. Investigations have been made with complex particles that differ in their hydrophobic/hydrophilic structure, size and net charge. Such complex aggregates could be prepared by mixing the cationic surfactant dodecylamido-ethyldimethylbenzylammonium chloride, the polycations poly(diallyldimethylammonium chloride) or poly(methacryloyloxyethyldimethylbenzylammonium chloride) and the copolymers of maleic acid with propene or methylstyrene as anionic components. It is found that the sorption capability increases with increasing molar mass and hydrophobic properties of the components used. In addition, the concentration ratio c polym/c org.poll that was required to reach optimal sorption conditions could be decreased by the use of macromolecules with high molar masses. The best results were obtained by using cationic stabilized complex particles formed with high-molar-mass polycations as sorbents for anionic dye molecules. Received: 10 November 1999 Accepted: 24 February 2000  相似文献   

17.
Boundaries of the existence of insoluble polyelectrolyte complexes in solutions of nonequimolar mixtures of quaternary polyamines and polycarboxylates of various degrees of polymerization have been determined with turbidimetric titration. It has been shown that in salt-free media the position of critical points expressed as the ratio between the charge numbers of polymer components in a mixture depends on the chemical nature of the host polyelectrolyte (polycation or polyanion) but does not depend on either the nature of the guest polyelectrolyte or the degree of polymerization of mixture components. Upon addition of a low-molecular-mass polyelectrolyte, the heterogeneous region widens. The shorter the host polyelectrolyte relative to the guest polyelectrolyte, the more pronounced this effect. Based on the thermodynamic state of the systems under examination, an explanation of this effect is confirmed by the velocity sedimentation data.  相似文献   

18.
We report on the formation of the polycation/dye/polyanion (PC/D/PA) complexes by the interaction between nonstoichiometric polycation/dye (PC/D) complexes with polyanions. Polycations differed in their content of the (N,N‐dimethyl‐2‐hydroxypropylene ammonium chloride) units in the main chain. Poly(sodium acrylate) (NaPA), poly(sodium 2‐acrylamido‐2‐methylpropane sulfonate) (NaPAMPS) and poly(sodium styrenesulfonate) (NaPSS) were used as polyanions. Crystal Ponceau 6R (CP6R) and Ponceau 4R (P4R) with two or three sulfonic groups were used as anionic dyes. The interaction between nonstoichiometric PC/D complexes and polyanions was followed by UV‐VIS spectroscopy, viscometry, and conductometry measurements. Formation of PC/D/PA complexes takes place mainly by the electrostatic interaction between the polyanion and the free positive charges of the nonstoichiometric PC/D complex. The stoichiometry and the stability of the tricomponent complexes depended on the polycation structure, the structure and molecular weight of polyanion, the dye structure, and the P/D molar ratio. A high amount of the dye was excluded from the complex before the end point when a branched polycation was used. The higher the solubility of the dye the lower the stability of the PC/D/PA complexes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 409–418, 1999  相似文献   

19.
The interaction between sodium poly(styrene sulfonate) (NaSS) and side-chain charged polycation polymer (pendent type) or main-chain charged polycation polymer (integral type) has been studied. It was found that the polyion complex (the reaction product of these polyelectrolytes) of pendent–pendent type has an equimolar composition at any mixing ratio of two component polymers. However, a polyion complex of integral–pendent type can form a water-soluble complex with a ratio of [polycation]/[polyanion] = 1/3, in addition to a complex with a equimolar composition. The mechanism of formation of this specific complex is discussed.  相似文献   

20.
Polyelectrolyte complexes (PEC) are ionically bonded hydrogels. The resin is synthesized by coreacting linear, water-soluble ionic polymers of opposite electrical charge under carefully controlled conditions. The resulting material is insoluble in water, electrolytes, organic, or common solvents, but soluble in special ternary solvents. Optically clear membranes or shaped articles can be prepared by employing simple solvent casting and drying techniques upon resin dissolution. The equilibrium gel water content of typical, homogeneous complexes can be made to range from 30 to 90% by weight by changing the initial polyanion to polycation ratio. For almost any given charge ratio the water content can be varied from 30 to 90% by initial adjustment of the solvent composition. As the gel water content of a membrane is raised the dialytic, oxygen, and water transport increase. High water content membranes with and without glass reinforcement were shown to be extremely permeable materials. Because these hydrated complexes appeared to be chemically inert and could be tailored to be rich in either polyanion or polycation charged groups, their biocompatability was studied. Extraction, toxicity, tissue compatability, carcinogenicity, and blood contact studies on various polyelectrolyte complexes were carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号