首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.  相似文献   

2.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

3.
4.
Pigments of the flavanol-anthocyanin (F-A+) type detected earlier in wine are synthesized using a protocol adapted from the synthesis of procyanidin dimers. The F-A+ adduct thus obtained is purified by countercurrent liquid-liquid partition, currently referred to as countercurrent chromatography (CCC). The solvent system consists of tert-butyl methyl ether-n-butanol-acetonitrile-water (2:2:1:5, acidified with 0.1% trifluoroacetyl) with the light organic phase acting as a stationary phase and the aqueous phase as the mobile phase. Four fractions are recovered and analyzed by high-performance liquid chromatography coupled to a diode-array detector and electrospray ionization mass spectrometer. The multilayer CCC method allowed the separation of pigments in three different groups. The first group consists of hydrosoluble pigments present in fraction 1; the second group consists of the F-A+ adducts [catechin-malvidin 3 glucoside (Mv3glc), along with some (catechin)2-Mv3glc]; and the third group is their anthocyanin precursor, Mv3glc.  相似文献   

5.
Limonene is a biorenewable cycloterpene solvent derived from orange peel waste. Its potential as a “green” solvent to replace heptane was recently evaluated. Countercurrent chromatography (CCC) is a preparative separation technique using biphasic liquid systems. One liquid phase is the mobile phase; the other liquid phase is the stationary phase held in place by centrifugal fields. A particular range of special proportions of the heptane/ethyl acetate/methanol/water system is called the Arizona (AZ) liquid system when the heptane/ethyl acetate ratio is exactly the same as the methanol/water ratio. A continuous polarity decrease is obtained between the most polar A composition (ethyl acetate/water or 0/1/0/1 v/v) and the least polar Z composition (heptane/methanol or 1/0/1/0 v/v), replacing heptane by limonene and methanol by ethanol produce biphasic liquid systems much more environmentallyfriendly than the original AZ compositions. The chemical compositions of the two liquid phases of 12 AZ limonene/ethyl acetate/ethanol/water proportions were fully determined by Karl-Fisher titration of water and by gas chromatography for the organic solvents. The results were compared with the compositions of the corresponding AZ mixtures containing heptane and methanol. Significant differences in ethyl acetate and ethanol distribution between phases of the two systems with identical volume proportions were established. The ratio of the upper phase over the lower phase volumes and the phase density difference are important in CCC, there are also significant differences between the classic and “green” AZ systems that are discussed.  相似文献   

6.
Countercurrent chromatography (CCC) is a separation technique that uses a biphasic liquid system; one liquid phase is the mobile phase, the other liquid phase is the stationary phase. Selection of the appropriate liquid system can be a problem in CCC, since it is necessary to select both the “column” and the mobile phase at the same time as the first is completely dependent on the second. A range of systems with various proportions of solvents were developed to ease this choice; 23 variations of the heptane/ethyl acetate/methanol/water biphasic liquid system were labeled A to Z. This range proved to be extremely useful and became the popular Arizona (AZ) liquid system. However, authors often replace the heptane with hexane. In this work, the chemical compositions of the upper phases and the lower phases of 55 Arizona systems made with various alkanes (pentane, hexane, heptane, isooctane and cyclohexane) were determined by gas chromatography and Karl Fischer titration. The test mixture separated consisted of five steroid compounds. The lower phases were found to have similar compositions when different alkanes were used, but the upper phases were found to change. Exchanging heptane for hexane or isooctane produced minimal changes in the CCC chromatogram, while changing the proportions of the solvents resulted in an exponential change in the retention volumes. The high density of cyclohexane made liquid stationary phase retention difficult. All Arizona systems equilibrated within 30 min, but were not stable: water slowly hydrolyzed the ethyl acetate (as shown by a continuous decrease in the pH of the lower aqueous phase), especially in the water-rich systems (early alphabet letters).  相似文献   

7.
A model of diffusive transport of benzoic acid through a liquid membrane (LM) separating two aqueous solutions, based on diffusion layers and the assumption of a steady state, has been developed and tested using experimental results. It has been found that a model with the apparent partition coefficient dependent on the concentration is able to describe the time dependence of acid concentration in LM with and without a maximum on that dependence. The quality of the model fit with the single apparent diffusion coefficient of benzoic acid is the same as the one which takes into account the diffusion of benzoic acid in different forms (undissociated and dissociated form in aqueous phase, monomer and dimer in organic phase); however, in the second case, the model becomes overparameterized. Assuming that the partition and diffusion coefficients are constant, the diffusion layer model corresponds to the model of reversible consecutive reactions. Analytical solution for such case is given. Apart from the partition equilibrium, also kinetics of partitioning was considered. It was shown that in some basic situations both cases yield identical results.  相似文献   

8.
The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.  相似文献   

9.
Counter-current chromatography (CCC) is a form of liquid–liquid partition chromatography. It requires two immiscible solvent phases; the stationary phase is retained in the separation column, generally by centrifugal force, while the mobile phase is eluted. We recently replaced the mobile phase with supercritical fluid carbon dioxide (SF CO2). Since the solvent strength of SF CO2 can be varied by changing the temperature and pressure of the system, separation adjustments are thus more versatile. We investigated the pressure and temperature effects on resolution using water and low-carbon alcohol mixtures as the stationary phases. It was demonstrated that these special properties of SF CO2 were indeed beneficial to the optimization of separations. In addition, the phase retention ratio was examined in terms of separation resolution. The results appeared very similar to those obtained from conventional traditional CCC. This study should be helpful for the future development of SF applications in CCC.  相似文献   

10.
Wei Y  Hu J  Li H  Liu J 《Journal of separation science》2011,34(23):3426-3432
Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR.  相似文献   

11.
周玉杰  陈福明  李总成 《色谱》2002,20(6):526-529
 根据逆流保留方程可知,溶质的出峰顺序主要取决于其在互不混溶的两液相间分配系数的大小顺序。以饱和及不饱和脂肪酸乙酯、2,4 二硝基苯胺基脂肪醇和对硝基苯基葡萄糖甙等结构较为简单、极性差别较大的溶质系列为研究对象,应用修正的通用基团活度系数(UNIFAC)(Dortmund)模型,通过相平衡计算,预测了它们在含水或不含水的溶剂体系中分配系数的变化趋势,并与前人的工作进行了对比。结果表明,由该方法预测出的相似结构溶质分配系数的顺序基本上与实验值相同,其中对饱和脂肪酸乙酯在己烷 乙腈(体积比为1∶1)体系中分配系数的预测最好。  相似文献   

12.
Countercurrent Chromatography (CCC) is a special form liquid-liquid partition chromatography which entirely eliminates the use of solid support matrix. Its development began in the mid-1960s and first introduction of CCC is in 1970. In its early stage of development, the method was hindered by a limited mobile flow rate since the application of higher flow rates resulted in excessive loss of the stationary phase from the column.  相似文献   

13.
The calculation of liquid-liquid equilibrium compositions of solvent systems is very important for the work on counter-current chromatography (CCC), especially the phase composition and volume ratio obtained from liquid-liquid equilibrium calculation. In this work, liquid-liquid equilibria of quaternary Arizona solvent systems, alkane-ethyl acetate-methanol-water, and related ternary systems are correlated and predicted using the non-random two-liquid model (NRTL). Hexane, heptane and isooctane are the used alkanes. The parameters in the model are regressed only with the special systems considered. Detailed comparison with experimental data shows that liquid-liquid equilibria of these systems can be predicted with greatly improved accuracy as compared to the group contribution method (UNIFAC).  相似文献   

14.
Countercurrent chromatography (CCC) is a liquid chromatography technique in which the stationary phase is also a liquid. The main chemical process involved in solute separation is partitioning between the two immiscible liquid phases: the mobile phase and the support-free liquid stationary phase. The octanol-water partition coefficients (P(o/w)) is the accepted parameter measuring the hydrophobicity of molecules. It is considered to estimate active principle partitioning over a biomembrane. It was related to the substance biological activity. CCC is able to work with an octanol stationary phase and an aqueous mobile phase. In this configuration, CCC is a useful and easy alternative to measure directly the P(o/w) of the molecules compared to other methods including the classical and tedious shake-flask method. Three ketones are used as model compounds to illustrate the CCC protocol of P(o/w) measurement. The focus of this work is put on ionisable molecules whose apparent P(o/w) is completely changed by ionization. β-Blockers, diuretics and sulfonamides are compound classes that were studied. Some of the experimentally determined P(o/w) coefficients of the molecular forms disagreed with calculated and experimental values available in the literature. The P(o/w) coefficients of the ionic forms and the acidity constants were also calculated using a theoretical model. Relationships between biological properties and hydrophobicity are also discussed.  相似文献   

15.
梅帆  秦炜  戴猷元 《应用化学》2002,19(6):517-0
磷酸三丁酯;正辛醇;苯甲酸稀溶液的萃取特性  相似文献   

16.
Countercurrent chromatography (CCC) is a support-free liquid-liquid chromatography using centrifugal fields to hold the liquid stationary phase. CCC has been widely applied in the separation of various natural and synthetic components using a variety of biphasic liquid systems. The related hexane or heptane/ethyl acetate/methanol or ethanol/water biphasic liquid systems demonstrated their significance in CCC. Gradient is difficult in CCC since any composition change in one phase induces a composition change of the other phase to maintain phase equilibrium. This work provides a new insight into linear gradient elution in CCC that is feasible with some biphasic liquid systems such as selected compositions of the hexane/ethyl acetate/ethanol/water systems. The equations modeling solute motion inside the CCC column are proposed. Particular compositions of the liquid system, namely the hexane/ethyl acetate/ethanol/water 8:2:E:W compositions with E + W = 10, were studied from W = 1 to 9. They showed moderate changes in the upper organic phase compositions. The model is tested with the separation of tanshinones from the rhizome of Salvia miltiorrhiza Bunge. Different linear solvent gradient profiles were experimentally performed between 8:2:5:5 and 8:2:3:7 compositions and the results were evaluated using the proposed model. Five tanshinones including dihydrotanshinone I, cryptotanshinone, tanshinone I, 1,2-dihydrotanshinquinone, and tanshinone IIA have been successfully separated (>95% purities) using a gradient profile optimized by the developed model. The gradient model can be used only with biphasic liquid systems in which one phase shows minimum composition changes when the other phase composition changes notably. This case is not the general case for biphasic liquid systems but can be applied with specific compositions of the quaternary hexane or heptane/ethyl acetate/methanol or ethanol/water most useful CCC liquid systems.  相似文献   

17.
Liu J  Sun J  Wang Y  Liu X  Sun Y  Xu H  He Z 《Journal of chromatography. A》2007,1164(1-2):129-138
The solvation parameter model has been applied to characterize four microemulsion liquid chromatography (MELC) systems and two micellar liquid chromatography (MLC) systems, and utilized to compare the above systems with other physicochemical and biological processes in this study. The microemulsion mobile phases were composed of sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij 35), butanol, heptane and phosphate buffer (pH 7.0) at the designated ratios. The results showed the main difference between the concerned MELC and MLC systems was the decrease of hydrogen-bond basicity of stationary phase with the addition of heptane in microemulsion. Principal component analysis with normalized coefficients can provide consistent results involving the similarities among various systems with that obtained by distance parameter d. Except for some proven similarities of chromatographic systems to octanol-water partition coefficients (logP) and human skin permeation (logK(p)), a microemulsion HPLC system, the mobile phase being 3.3% SDS-6.6% butanol-1.6% heptane-88.5% buffer, was found very similar to drug penetration across blood-brain barrier and its predictive capability for this biological process was originally evaluated in this study.  相似文献   

18.
Abstract

Multistage separation based on liquid-liquid extraction has been investigated by means of centrifugal partition chromatography (CPC). A kerosene solution of 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (EHPA) was employed as a stationary phase without any solid support. Metal ions eluted by the aqueous mobile phase were detected by the post-column reaction with Arsenazo III. The retention volumes are approximately linear with the distribution ratios of metals. The mutual separation of adjacent lanthanoids was accomplished by CPC.  相似文献   

19.
In reversed-phase high performance liquid chromatography, the logarithm of the retention factor, log k, is usually correlated with the logarithm of the octanol-water partition coefficient, log Kow. The k and Kow of an ionizable analyte are greatly influenced by the mobile phase pH. In this paper, log kw of diprotic o-phthalic, 3-nitrophthalic, and 4-nitrophthalic acids, are obtained by extrapolation to pure aqueous fraction of mobile phase in ion-suppression reversed-phase high performance liquid chromatography with acetic acid and perchloric acid as the ion-suppressors. The Kow values of the three analytes are calibrated according to the apparent octanol-water partition coefficient, Kow, under different pH conditions, and the log K"ow values show a much better correlation with log kw than do log Kow. The influences of two ion-suppressors, acetic and perchloric acids, on the retention behavior of these diprotic acids at different pH are contrasted. An abnormal trend is found in the k vs. pHw plot of the acetic acid system when the methanol content is low. A possible reason is that acetic acid is an even stronger organic modifier than methanol, besides being an ion-suppressor. The results make the selection of mobile phase for the separation of acidic compounds by ion-suppression reversed-phase high performance liquid chromatography direct, accurate, and practical.  相似文献   

20.
疏水分配常数用于反相液相色谱保留值的预测   总被引:2,自引:0,他引:2  
陈农  张玉奎 《分析化学》1993,21(4):384-387
在反相液相色谱保留值基本方程log k_′=a+_cC_B的基础上,描述了采用疏水分配常数及氢键作用能来预测a、c参数的方法,并系统讨论了疏水分配常数对参数a、c的影响,借此对反相液相色谱宽浓度范围内的保留值进行了预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号