首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In 1968, clinical chemistry was considered to be the field most in need of certified reference materials (CRMs). While significant progress has been made in this area, new diagnostic assays are continually being developed that create a need for new CRMs. Members of the clinical laboratory community help to identify reference material needs. Professional and governmental organizations, such as IFCC, AACC, NCCLS, CDC, and the national metrological institutes (NMIs), respond to develop protocols and materials. Several measurands are presented as examples. In the late 1950s and early 1960s, in response to a need for standardization of lipid and lipoprotein measurements, CDC developed a reference system that included secondary reference materials. Over the years, the process of preparation of these materials was refined, eventually leading to the development of NCCLS guideline for preparation of commutable frozen serum pools for use as secondary reference materials (C37-A). This protocol was used for the preparation of NIST SRM 1951a (lipids in frozen (liquid) human serum). In the 1980s, a need for a reference material for blood lead was identified. CDC and NIST cooperated to develop SRM 955 (lead in bovine blood). More recently, efforts have been initiated to standardize high-sensitivity C-reactive protein (hsCRP) assays. In this case, a CRM for CRP existed (CRM 470, developed by IFCC and available from IRMM), but at concentrations in the acute phase reactant range and not in the low range needed for hsCRP assays. CDC coordinated a study to evaluate diluted CRM470 and other candidate materials as secondary reference materials for hsCRP assays.Presented at BERM-9—Ninth International Symposium on Biological and Environmental Reference Materials, June 15–19, 2003, Berlin, Germany.  相似文献   

2.
The elements Mn and V were determined by INAA in about 5 mg and 100 mg aliquots of NIST SRM 1648 to elucidate discrepancies between our previous results for the 0.5 mg to 15 mg aliquots and the NIST certified and/or information values. Simultaneously, other NIST SRMs 1633a, 2704, and BCR CRMs 038, 101 and 143 were also analyzed. Special attention was given to evaluating and minimizing uncertainties of all steps of analysis. Our results compared very well with the respective certified and/or information values (if available) of all SRMs and CRMs studied, except for NIST SRM 1648. For this SRM we have found significantly lower results than the NIST values which suggests that the NIST values are positively biased by about 10%. A new value for V in BCR CRM 143 was also obtained.  相似文献   

3.
Summary During the author's 39 years with the National Bureau of Standards (NBS)/National Institute for Standards and Technology (NIST) as an employee, and since then as Guest Researcher, he has been intimately involved with biological Standard Reference Material (SRM) production and analyses. His involvement with biological reference materials started with the very first biological certified reference material (CRM), the SRM 1571, Orchard Leaves, initiated in 1968 and issued in 1971, through the latest material (SRM 1575a, Pine Needles - renewal), issued in 2003. In addition, for more than 20 years he was Technical Coordinator for botanical SRMs for the NBS/NIST Analytical Chemistry Division. This paper contains his historical reflections and highlights from those years, and includes the techniques used to obtain and process these materials, new developments and procedures that resulted in vastly improved reference materials, the application of high accuracy neutron activation analysis to the certification of these standards, and the trace element quality assurance vital to the accuracy of these standards.  相似文献   

4.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 +/- 0.7 microg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 +/- 1.7 microg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

5.
The methylmercury content in two new marine bivalve mollusk tissue Standard Reference Materials (SRMs) has been certified using results of analyses from the National Institute of Standards and Technology (NIST) and two other laboratories. The certified concentrations of methylmercury were established based on the results from four and six different (independent) analytical methods, respectively, for SRM 1566b Oyster Tissue (13.2 ± 0.7 μg/kg) and SRM 2977 Mussel Tissue (organic contaminants and trace elements) (36.2 ± 1.7 μg/kg). The certified concentration of methylmercury in SRM 1566b is among the lowest in any certified reference material (CRM).  相似文献   

6.
A robust analytical method has been developed and validated by use of high-performance liquid chromatography inductively coupled plasma mass spectrometry with Dynamic Reaction Cell? (DRC) technology that separates seven arsenic (As) species in human urine: arsenobetaine (AB), arsenocholine, trimethylarsine oxide (TMAO), arsenate (As(V)), arsenite (As(III)), monomethylarsonate, and dimethylarsinate. A polymeric anion-exchange (Hamilton PRP® X-100) column was used for separation of the species that were detected at m/z 75 by ICP-DRC-MS (PerkinElmer? SCIEX® ELAN DRCII?) using 10% hydrogen–90% argon as the DRC gas. The internal standard (As) is added postcolumn via an external injector with a sample loop. All analyte peaks were baseline-separated except AB and TMAO. Analytical method limits of detection for the various species ranged from 0.4 to 1.7 μg L?1 as elemental As. As(III) conversion to As(V) was avoided by adjusting the urine sample to 相似文献   

7.
New US Federal low-level automobile emission requirements, such as Zero Level Emission Vehicle (ZLEV), for hydrocarbons and other species have resulted in manufacturers need for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of 100 nmol/mol (ppb) propane in air gas standard. Emission measurement instruments are required, by Federal law, to be calibrated with the US National Institute of Standards and Technology (NIST) traceable reference materials. A NIST Standard Reference Material (SRM) containing 100 nmol/mol propane has been developed. During the development of this SRM a critical question arose as to the matrix of the primary propane standards. The automobile companies make their measurements using total hydrocarbon analyzers with flame-ionization detectors which integrate all hydrocarbons in a sample. NIST uses gas chromatography/flame-ionization detection (GC/FID) with a column to separate all components. Since the SRM mixtures were in air, the question as to the effect of oxygen on the detector arose. To investigate this effect, two suites of propane primary standards were developed: one in air and the other in nitrogen. The two suites of primary standards were analyzed using NIST methods, and the concentration of propane in an air mixture was determined. The results show that there was a difference of 0.63% in the propane concentration determined versus air and nitrogen suites.  相似文献   

8.
Summary NIST issues food related, chemical composition standard reference materials for validating food analyses. SRMs certified for inorganic constituents are: Non-Fat Milk Powder (SRM 1549), Oyster Tissue (SRM 1566a), Bovine Liver (SRM 1577a), Wheat Flour (SRM 1567a), Rice Flour (SRM 1568a), and Total Diet (SRM 1548). The certificate of analysis for the total diet SRM also provides a certified concentration for cholesterol. Oyster tissue, a renewal SRM, is certified for 25 elements including 6 (Al, Cl, I, P, S, and V), that had not been certified in the previously issued SRM 1566. The elemental certified concentrations are based on concordant results of two or more independent analytical methods. The chemical compositions of the six food matrix SRMs are tabulated. Three food matrix SRMs certified for organic constituents are: Cholesterol and Fat-Soluble Vitamins in Coconut Oil (SRM 1563), Cholesterol in Whole Egg Powder (SRM 1845) and Organics in Cod Liver Oil (SRM 1588). Serum and urine matrix SRMs are also available that may be useful for metabolic and bioavailability studies.  相似文献   

9.
New US federal low-level automobile emission requirements, for example zero-level-emission vehicle (ZLEV), for hydrocarbons and other species, have resulted in the need by manufacturers for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of a 100 nmol mol(-1) propane in air gas standard. Emission-measurement instruments are required, by federal law, to be calibrated with National Institute of Standards and Technology (NIST) traceable reference materials. Because a NIST standard reference material (SRM) containing 100 nmol mol(-1) propane was not available, the US Environmental Protection Agency (EPA) and the Automobile Industry/Government Emissions Research Consortium (AIGER) requested that NIST develop such an SRM. A cylinder lot of 30 gas mixtures containing 100 nmol mol(-1) propane in air was prepared in 6-L aluminium gas cylinders by a specialty gas company and delivered to the Gas Metrology Group at NIST. Another mixture, contained in a 30-L aluminium cylinder and included in the lot, was used as a lot standard (LS). Using gas chromatography with flame-ionization detection all 30 samples were compared to the LS to obtain the average of six peak-area ratios to the LS for each sample with standard deviations of <0.31%. The average sample-to-LS ratio determinations resulted in a range of 0.9828 to 0.9888, a spread of 0.0060, which corresponds to a relative standard deviation of 0.15% of the average for all 30 samples. NIST developed its first set of five propane in air primary gravimetric standards covering a concentration range 91 to 103 nmol mol(-1) with relative uncertainties of 0.15%. This new suite of propane gravimetric standards was used to analyze and assign a concentration value to the SRM LS. On the basis of these data each SRM sample was individually certified, furnishing the desired relative expanded uncertainty of +/-0.5%. Because automobile companies use total hydrocarbons to make their measurements, it was also vital to assign a methane concentration to the SRM samples. Some of the SRM samples were analyzed and found to contain 1.2 nmol mol(-1) methane. Twenty-five of the samples were certified and released as SRM 2765.  相似文献   

10.
The IAEA-331 spinach material NIST SRM 1570a Spinach Leaves, submitted to an intercomparison run by the IAEA, has been analysed by k0-based INAA with counting using both low and high energy photon detectors. The results have been compared with (i) the certified values of the NIST SRM 1570a; the agreement is good, taking into account the uncertainties; and (ii) the certified and “consensus” values of the former NIST SRM 1570 Spinach Leaves, their composition in minor and trace-elements are quite similar; however a lower content has been observed for Co, Fe and Sc in the IAEA-331 and for Zn in the SRM 1570. For quality control, the NIST 1573 Tomato Leaves and the NIST 1575 Pine Needles have been analysed using the same conditions as for the IAEA-331. The results agree quite well with the certified and “consensus” values given in the literature.  相似文献   

11.
Sector field ICP-MS was used to analyse As and Se in a range of standard reference materials (NIST 1643d Water, NIST 1573a Tomato Leaves, NIST 1566a Oyster Tissue, NIST 2704 Buffalo River Sediment and Bio-Rad Reference Urine Level 2). A spectral resolution of m/Δm = 7500 enabled 75As and 77Se to be separated from problematic ArCl interferences. Following microwave acid digestion, solid samples were typically diluted 1 + 99 prior to analysis, while the urine sample was diluted 1 + 9. The water sample was analysed undiluted and diluted 1 + 9. Despite near baseline spectral separation, 75As and 77Se were still found to be influenced by ArCl at high Cl concentrations, the effect being most pronounced for 77Se. When necessary 82Se was also monitored to determine the accuracy of the 77Se results. Detection limits (LOD, based on 3σ of 10 replicates) for 75As, 77Se and 82Se in ultra-pure water, 1% (w/w) HNO3 and 1% (w/w) HCl were ~?0.1, ~?0.2 and ~?0.5 ng g–1, respectively. Although signal intensities when using high resolution were ~?1% of that found when using low resolution mode (m/Δm = 300), measured As concentrations and certified values were found to agree to within ± 11% for all samples analysed. The concentration of Se in NIST 1566a Oyster Tissue, NIST 2704 Buffalo River Sediment and Bio-Rad Reference Urine were found to be in agreement with certified values to within ± 15– 20%, as measured by 77Se. However, closer agreement (± 5%) was found when these samples were analysed using 82Se. The Se concentration in NIST 1643d Water was found to agree to within ± 5% of the certified value (depending on dilution factor). Due to the low concentration of Se in NIST 1573a Tomato Leaves, quantitation was not possible (below LOQ, 10σ). As a consequence of the lower ion transmission when using resolution 7500, analytical precisions were found to be elevated over that normally observed using low resolution mode, typically ± 5–20% (depending on analyte concentration and isotopic abundance).  相似文献   

12.
Both (206)Pb-labeled trimethyllead (TML) and triethyllead (TEL) were synthesized from (206)Pb-enriched metallic Pb certified reference material (NIST SRM 983) and iodomethane or iodoethane through a one-process reaction in a closed system using centrifuge tubes, respectively. Organolead compounds in an urban dust reference material (BCR CRM 605) were extracted with an acetic acid/methanol (1:1) solution, which was mechanically shaken for 24 h. After adjusting the pH of the extracted solution to pH 5, the extracted organolead compounds were derivatized by tetrabutylammonium tetrabutylborate (TATB) and measured with GC-ICPMS. The analytical results of TML and TEL for BCR CRM 605 were 8.22 +/- 0.04 microg kg(-1) (mean +/- standard deviation, n = 3) and 1.12 +/- 0.06 microg kg(-1), respectively. The analytical results of TML agreed well with the certified value (7.9 +/- 1.2 microg kg(-1)).  相似文献   

13.
Standard Reference Material (SRM) 1849 Infant/Adult Nutritional Formula has been issued by the National Institute of Standards and Technology (NIST) as a replacement for SRM 1846 Infant Formula, issued in 1996. Extraction characteristics of SRM 1846 have changed over time, as have NIST's analytical capabilities. While certified mass fraction values were provided for five constituents in SRM 1846 (four vitamins plus iodine), certified mass fraction values for 43 constituents are provided in SRM 1849 (fatty acids, elements, and vitamins) and reference mass fraction values are provided for an additional 43 constituents including amino acids and nucleotides, making it the most extensively characterized food-matrix SRM available from NIST.  相似文献   

14.
Substance abuse is a major problem worldwide. There is considerable emphasis placed upon testing individuals for evidence of use of controlled substances. Because the consequences of a positive test can be quite severe, laboratories conducting such tests must rigorously follow a carefully designed quality assurance program. Such a QA program should include use of reference materials to assure that the methods used to detect and quantify drugs are providing accurate results. The National Institute of Standards and Technology (NIST) supports accuracy in drugs of abuse testing by providing Standard Reference Materials (SRMs) with certified concentrations of drugs of abuse in urine- and hair-based reference materials. NIST, working in collaboration with the College of American Pathologists (CAP), has developed urine-based SRMs for marijuana metabolite, cocaine metabolite, morphine and codeine, and morphine glucuronide and CAP Reference Materials for amphetamines and phencyclidine. Certification measurements performed at NIST involve two independent methods for each analyte, one of which always uses GC/MS with the other usually being an LC method with either MS or UV detection. Work has recently been completed on a seven component drug in urine SRM. In addition NIST conducts research in the analysis of hair for drugs of abuse. To assist laboratories testing hair for that purpose, NIST has developed two drugs in hair reference materials.College of American Pathologists Research Associate at NIST  相似文献   

15.
Radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in standard reference material (SRM) 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1 × 1014 cm?2 s?1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix either by retention on hydrated manganese dioxide (urine) or by extraction into zinc diethyldithiocarbamate in chloroform (blood). 76As was quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma-mass spectrometry values from National Institute of Standards and Technology and collaborating laboratories to provide certified values of 10.81 ± 0.54 and 213.1 ± 0.73 μg/L for SRM 2668 Levels I and II, and certified values of 21.66 ± 0.73, 52.7 ± 1.1, and 78.8 ± 4.9 μg/L for SRM 955c Levels II–IV, respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level I, an information value of <5 μg/L was assigned for this material.  相似文献   

16.
The National Institute of Standards and Technology (NIST) has been certifying lots, or series, of Standard Reference Materials (SRMs) containing ambient level methane in air for over 40 years. The historical record contains six traditional series of SRM 1658 (1 μmol?mol?1), five of SRM 1660 (4 μmol?mol?1), and seven of SRM 1659 (10 μmol?mol?1) methane in air. All series of any one particular SRM can be linked to each other through the historical suites of gravimetric primary standard mixtures (PSMs) developed at NIST. One gas mixture cylinder from a series is chosen as the lot standard (LS), retained and held at NIST, and periodically compared to the PSMs to assure its stability. Recently, 6 of the original 18 LS still in service in the Gas Metrology Group inventory, and cylinder samples held at NIST from 6 other SRM lots, were analyzed against a newly prepared suite of PSMs using cavity ring-down spectroscopy. Data were analyzed using a generalized least squares linear regression. The results indicate that, within the original 95 % confidence intervals, the methane concentration has remained the same for all the SRM LS and lot samples. The current predicted concentrations of the LS and samples for SRMs 1659 and 1660 are within 0.002 to 0.051 μmol?mol?1, or ≤0.5 %, relative of the original certificate value. SRM 1658 LS and samples are within 0.0001 to 0.0023 μmol?mol?1, or ≤0.2 % relative. These results illustrate the consistency, repeatability, and stability of these methane in air SRMs over the historical 35+-year record. It also demonstrates that the historical gravimetric primary methane in air suites have remained accurate and consistent over time.  相似文献   

17.
A set of certified Reference Materials was prepared consisting of four natural agricultural soils with normal (n) and elevated (e) levels of element contents: CRM 7001 Light Sandy Soil (n), CRM 7002 Light Sandy Soil (e), CRM 7003 Silty Clay Loam (n), and CRM 7004 Loam (e). In these materials, certified and/or information values of the total contents of the elements As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn, and their fractions extractable by aqua regia, boiling and cold 2M nitric acid were derived from an interlaboratory comparison in which 28 laboratories participated. Highly precise and accurate procedures of instrumental neutron activation analysis (INAA) were employed for homogeneity testing and also for certification of the total element contents. For comparation purposes, NIST SRM-2704 Buffalo River Sediment was analyzed by INAA, as well. The INAA results obtained compared very well with the certified and/or information values for four soil CRMs and also with NIST values for SRM-2704. From this agreement, a very high reliability of the new soil CRMs can be inferred.  相似文献   

18.
The National Institute of Standards and Technology (NIST) is developing a wide variety of Standard Reference Materials (SRMs) to support measurements of vitamins and other nutrients in foods. Previously, NIST has provided SRMs with values assigned for the folate vitamer, folic acid (pteroylglutamic acid), which is fortified in several foods due to its role in prevention of neural tube defects. In order to expand the number of food-based SRMs with values assigned for folic acid, as well as additional endogenous folates, NIST has developed methods that include trienzyme digestion and isotope-dilution liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Sample preparation was optimized for each individual food type, but all samples were analyzed under the same LC-MS/MS conditions. The application of these methods resulted in folic acid values for SRM 1849a Infant/Adult Nutritional Formula and SRM 3233 Fortified Breakfast Cereal of (2.33?±?0.06) μg/g and (16.0?±?0.7) μg/g, respectively. In addition, the endogenous folate vitamer 5-methlytetrahydrofolate (5-MTHF) was detected and quantified in SRM 1849a Infant/Adult Nutritional Formula, candidate SRM 1549a Whole Milk Powder, and candidate SRM 1845a Whole Egg Powder, resulting in values of (0.0839?±?0.0071) μg/g, (0.211?±?0.014) μg/g, and (0.838?±?0.044) μg/g, respectively. SRM 1849a Infant/Adult Nutritional Formula is the first food-based NIST SRM to possess a reference value for 5-MTHF and the first certified reference material to have an assigned 5-MTHF value based on LC-MS/MS. The values obtained for folic acid and 5-MTHF by LC-MS/MS will be incorporated into the final value assignments for all these food-based SRMs.  相似文献   

19.
Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4′-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.
Figure
Comparison of Concentrations of Selected Compounds in Human Serum and Human Milk Standard Reference Materials (SRMs)  相似文献   

20.
The National Institute of Standards and Technology (NIST) (formerly the National Bureau of Standards (NBS)) issued the first botanical reference material certified for elemental content in January 1971, as Standard Reference Material (SRM) 1571, Orchard Leaves. In the following years a total of nine additional botanical certified reference materials have been issued by NIST. Each of these materials was certified for major, minor and trace elements except for SRM 2695, certified for fluorine only. Botanical SRMs issued since 1991 are significantly improved over previous materials in a number of ways. Probably the most significant change is the use of a jet-milling process to grind them to extremely fine particles. This has resulted in botanical SRMs with significantly improved homogeneity. These NIST reference materials are described with information on homogeneity, drying techniques and grit content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号