首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

2.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

3.
Reactions between the Os(VI)-nitrido complexes cis- and trans-[Os(VI)(tpy)(Cl)2(N)]+ (tpy is 2,2':6',2"-terpyridine) and triphenylphosphine sulfide, SPPh3, give the corresponding Os(IV)-phosphoraniminato, [Os(IV)(tpy)(Cl)2(NPPh3)]+, and Os(II)-thionitrosyl, [Os(II)(tpy)(Cl)2(NS)]+, complexes as products. The Os-N bond length and Os-N-P angle in cis-[Os(IV)(tpy)(Cl)2(NPPh3)](PF6) are 2.077(6) A and 138.4(4) degrees. The rate law for formation of cis- and trans-[Os(IV)(tpy)(Cl)2(NPPh3)]+ is first order in both [Os(VI)(tpy)(Cl)2(N)]+ and SPPh3 with ktrans(25 degrees C, CH3CN) = 24.6 +/- 0.6 M(-1) s(-1) and kcis(25 degrees C, CH3CN) = 0.84 +/- 0.09 M(-1) s(-1). As found earlier for [Os(II)(tpm)(Cl)2(NS)]+, both cis- and trans-[Os(II)(tpy)(Cl)2(NS)]+ react with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3. For both complexes, the reaction is first order in each reagent with ktrans(25 degrees C, CH3CN) = (6.79 +/- 0.08) x 10(2) M(-1) s(-1) and kcis(25 degrees C, CH3CN) = (2.30 +/- 0.07) x 10(2) M(-1) s(-1). The fact that both reactions occur rules out mechanisms involving S atom transfer. These results can be explained by invoking a common intermediate, [Os(IV)(tpy)(Cl)2(NSPPh3)]+, which undergoes further reaction with PPh3 to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and SPPh3 or with [Os(VI)(tpy)(Cl)2(N)]+ to give [Os(IV)(tpy)(Cl)2(NPPh3)]+ and [Os(II)(tpy)(Cl)2(NS)]+.  相似文献   

4.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

5.
The oxidations of cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6), cis-[OsII(bpy)2(Cl)(NH3)](PF6), and [OsII(typ)(bpy)(NH3)](PF6)2 have been studied by cyclic voltammetry and by controlled-potential electrolysis. In acetonitrile or in acidic, aqueous solution, oxidation is metal-based and reversible, but as the pH is increased, oxidation and proton loss from coordinated ammonia occurs. cis- and trans-[OsIII(tpy)(Cl)2(NH3)](PF6) are oxidized by four electrons to give the corresponding OsVI nitrido complexes, [OSVI(typ)(Cl)2(N)]+. Oxidation of [Os(typ)(bpy)(NH3)](PF6)2 occurs by six electrons to give [Os(tpy)(bpy)(NO)](PF6)3. Oxidation of cis-[OsII(bpy)2(Cl)(NH3)](PF6) at pH 9.0 gives cis-[OsII(bpy)2(Cl)(NO)](PF6)2 and the mixed-valence form of the mu-N2 dimer [cis-[Os(bpy)2(Cl)2[mu-N2)](PF6)3. With NH4+ added to the electrolyte, cis-[OsII(bpy)2(Cl)(N2)](PF6) is a coproduct. The results of pH-dependent cyclic voltammetry measurements suggest OsIV as a common intermediate in the oxidation of coordinated ammonia. For cis- and trans-[OsIII(tpy)(Cl)2(NH3)]+, OsIV is a discernible intermediate. It undergoes further pH-dependent oxidation to [OsVI(tpy)(Cl)2(N)]+. For [OsII(tpy)(bpy)(NH3)]2+, oxidation to OsIV is followed by hydration at the nitrogen atom and further oxidation to nitrosyl. For cis-[OsII(bpy)2(Cl)-(NH3)]+, oxidation to OsIV is followed by N-N coupling and further oxidation to [cis-[Os(bpy)2(Cl)2(mu-N2)]3+. At pH 9, N-N coupling is competitive with capture of OsIV by OH- and further oxidation, yielding cis-[OsII(bpy)2(Cl)(NO)]2+.  相似文献   

6.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

7.
Reactions between the Os(VI)-nitrido salts (e.g., trans-[Os(VI)(tpy)(Cl)(2)(N)]PF(6) (tpy = 2,2':6',2"-terpyridine), cis-[Os(VI)(tpy)(Cl)(2)(N)]PF(6), and fac-[Os(VI)(tpm)(Cl)(2)(N)]PF(6) (tpm = tris(pyrazol-1-yl)methane)) and the hydroxylamines (e.g., H(2)NOH and MeHNOH) and the methoxylamines (e.g., H(2)NOMe and MeHNOMe) in dry MeOH at room temperature give three different types of products. They are Os(II)-dinitrogen (e.g., trans-, cis-, or fac-[Os(II)-N(2)]), Os(II)-nitrosyl [Os(II)-NO](+) (e.g., trans- or cis-[Os(II)-NO](+)), Os(IV)-hydroxyhydrazido (e.g., cis-[Os(IV)-N(H)N(Me)(OH)](+)), and Os(IV)-methoxyhydrazido (e.g., trans-/cis-[Os(IV)-N(H)N(H)(OMe)](+), and trans-/cis-[Os(IV)-N(H)N(Me)(OMe)](+)) adducts. The products depend in a subtle way on the electron content of the starting nitrido complexes, the nature of the hydroxylamines, the nature of the methoxylamines, and the reaction conditions. Their appearance can be rationalized by invoking the formation of a series of related Os(IV) adducts which are stable or decompose to give the final products by two different pathways. The first involves internal 2-electron transfer and extrusion of H(2)O, MeOH, or MeOMe to give [Os(II)-N(2)]. The second which gives [Os(II)-NO](+) appears to involve seven-coordinate Os(IV) intermediates based on the results of an (15)N-labeling study.  相似文献   

8.
Meyer TJ  Huynh MH 《Inorganic chemistry》2003,42(25):8140-8160
There is a remarkable redox chemistry of higher oxidation state M(IV)-M(VI) polypyridyl complexes of Ru and Os. They are accessible by proton loss and formation of oxo or nitrido ligands, examples being cis-[RuIV(bpy)2(py)(O)]2+ (RuIV=O2+, bpy=2,2'-bipyridine, and py=pyridine) and trans-[OsVI(tpy)(Cl)2(N)]+ (tpy=2,2':6',2' '-terpyridine). Metal-oxo or metal-nitrido multiple bonding stabilizes the higher oxidation states and greatly influences reactivity. O-atom transfer, hydride transfer, epoxidation, C-H insertion, and proton-coupled electron-transfer mechanisms have been identified in the oxidation of organics by RuIV=O2+. The Ru-O multiple bond inhibits electron transfer and promotes complex mechanisms. Both O atoms can be used for O-atom transfer by trans-[RuVI(tpy)(O)2(S)]2+ (S=CH3CN or H2O). Four-electron, four-proton oxidation of cis,cis-[(bpy)2(H2O)RuIII-O-RuIII(H2O)(bpy)2]4+ occurs to give cis,cis-[(bpy)2(O)RuV-O-RuV(O)(bpy)2]4+ which rapidly evolves O2. Oxidation of NH3 in trans-[OsII(tpy)(Cl)2(NH3)] gives trans-[OsVI(tpy)(Cl)2(N)]+ through a series of one-electron intermediates. It and related nitrido complexes undergo formal N- transfer analogous to O-atom transfer by RuIV=O2+. With secondary amines, the products are the hydrazido complexes, cis- and trans-[OsV(L3)(Cl)2(NNR2)]+ (L3=tpy or tpm and NR2-=morpholide, piperidide, or diethylamide). Reactions with aryl thiols and secondary phosphines give the analogous adducts cis- and trans-[OsIV(tpy)(Cl)2(NS(H)(C6H4Me))]+ and fac-[OsIV(Tp)(Cl)2(NP(H)(Et2))]. In dry CH3CN, all have an extensive multiple oxidation state chemistry based on couples from Os(VI/V) to Os(III/II). In acidic solution, the OsIV adducts are protonated, e.g., trans-[OsIV(tpy)(Cl)2(N(H)N(CH2)4O)]+, and undergo proton-coupled electron transfer to quinone to give OsV, e.g., trans-[OsV(tpy)(Cl)2(NN(CH2)4O)]+ and hydroquinone. These reactions occur with giant H/D kinetic isotope effects of up to 421 based on O-H, N-H, S-H, or P-H bonds. Reaction with azide ion has provided the first example of the terminal N4(2-) ligand in mer-[OsIV(bpy)(Cl)3(NalphaNbetaNgammaNdelta)]-. With CN-, the adduct mer-[OsIV(bpy)(Cl)3(NCN)]- has an extensive, reversible redox chemistry and undergoes NCN(2-) transfer to PPh3 and olefins. Coordination to Os also promotes ligand-based reactivity. The sulfoximido complex trans-[OsIV(tpy)(Cl)2(NS(O)-p-C6H4Me)] undergoes loss of O2 with added acid and O-atom transfer to trans-stilbene and PPh3. There is a reversible two-electron/two-proton, ligand-based acetonitrilo/imino couple in cis-[OsIV(tpy)(NCCH3)(Cl)(p-NSC6H4Me)]+. It undergoes reversible reactions with aldehydes and ketones to give the corresponding alcohols.  相似文献   

9.
The complex framework [Ru(tpy)(dpk)]2+ has been used to study the generation and reactivity of the nitrosyl complex [Ru(tpy)(dpk)(NO)]3+ ([4]3+). Stepwise conversion of the chloro complex [Ru(tpy)(dpk)(Cl)]+ ([1]+) via [Ru(tpy)(dpk)(CH3CN)]2+ ([2]2+) and the nitro compound [Ru(tpy)(dpk)(NO2)]+ ([3]+) yielded [4]3+; all four complexes were structurally characterized as perchlorates. Electrochemical oxidation and reduction was investigated as a function of the monodentate ligand as was the IR and UV-vis spectroscopic response (absorption/emission). The kinetics of the conversion [4]3+/[3]+ in aqueous environment were also studied. Two-step reduction of [4]3+ was monitored via EPR, UV-vis, and IR (nu(NO), nu(CO)) spectroelectrochemistry to confirm the {RuNO}7 configuration of [4]2+ and to exhibit a relatively intense band at 505 nm for [4]+, attributed to a ligand-to-ligand transition originating from bound NO-.  相似文献   

10.
The reactions between trans-[Os(IV)(tpy)(Cl)(2)(NCN)] (1) and PPh(3) and between trans-[Os(IV)(tpy)(Cl)(2)(NPPh(3))](+) (2) and CN(-) provide new examples of double derivatization of the nitrido ligand in an Os(VI)-nitrido complex (Os(VI)N). The nitrilic N-bound product from the first reaction, trans-[Os(II)(tpy)(Cl)(2)(NCNPPh(3))] (3), is the coordination isomer of the first iminic N-bound product from the second reaction, trans-[Os(II)(tpy)(Cl)(2)(N(CN)(PPh(3)))] (4). In CH(3)CN at 45 degrees C, 4 undergoes isomerrization to 3 followed by solvolysis and release of (N-cyano)iminophosphorane, NCNPPh(3). These reactions demonstrate new double derivatization reactions of the nitrido ligand in Os(VI)N with its implied synthetic utility.  相似文献   

11.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

12.
A series of cyanide-bridged complexes that combine a low-valent photoacceptor rhenium(I) metal center with an electroactive midvalent rhenium(V) complex were prepared. The synthesis involved the preparation of novel asymmetric rhenium(V) oxo compounds, cis-Re(V)O(CN)(acac(2)en) (1) and cis-Re(V)O(CN)(acac(2)pn) (2), formed by reacting trans-[Re(V)O(OH(2))(acac(2)en)]Cl or trans-Re(V)O(acac(2)pn)Cl with [NBu(4)][CN]. The μ-bridged cyanide mixed-oxidation Re(V)-Re(I) complexes were prepared by incubating the asymmetric complexes, 1 or 2, with fac-[Re(I)(bipy)(CO)(3)][OTf] to yield cis-[Re(V)O(acac(2)en)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (3) and [cis-Re(V)O(acac(2)pn)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (4), respectively.  相似文献   

13.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

14.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

15.
We here report our studies on the conjugation of photoreactive Ru(2+) complex to oligonucleotides (ODNs), which give a stable duplex with the complementary target DNA strand. These functionalized DNA duplexes bearing photoreactive Ru(2+) complex can be specifically photolyzed to give the reactive aqua derivative, [Ru(tpy)(dppz)(H(2)O)](2+)-ODN (tpy = 2,2':6',2' '-terpyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine), in situ, which successfully cross-links to give photoproduct(s) in the duplex form with the target complementary DNA strand. Thus, the stable precursor of the aquaruthenium complex, the monofunctional polypyridyl ruthenium complex [Ru(tpy)(dppz)(CH(3)CN)](2+), has been site-specifically tethered to ODN, for the first time, by both solid-phase synthesis and postsynthetic modifications. (i) In the first approach, pure 3'-[Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate has been obtained in 42% overall yield (from the monomer blocks) by the automated solid-phase synthesis on a support labeled with [Ru(tpy)(dppz)Cl](+) complex with subsequent liberation of the crude conjugate from the support under mild conditions and displacement of the Cl(-) ligand by acetonitrile in the coordination sphere of the Ru(2+) label. (ii) In the second approach, the single-modified (3'- or 5'- or middle-modified) or 3',5'-bis-modified Ru(2+)-ODN conjugates were prepared in 28-50% yield by an amide bond formation between an active ester of the metal complex and the ODNs conjugated with an amino linker. The pure conjugates were characterized unambiguously by ultraviolet-visible (UV-vis) absorption spectroscopy, enzymatic digestion followed by HPLC quantitation, polyacrylamide gel electrophoresis (PAGE), and mass spectrometry (MALDI-TOF as well as by ESI). [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODNs form highly stabilized ODN.DNA duplexes compared to the unlabeled counterpart (DeltaT(m) varies from 8.4 to 23.6 degrees C) as a result of intercalation of the dppz moiety; they undergo clean and selective photodissociation of the CH(3)CN ligand to give the corresponding aqua complex, [Ru(tpy)(dppz)(H(2)O)](2+)-ODNs (in the aqueous medium), which is evidenced from the change of their UV-vis absorption properties and the detection of the naked Ru(2+)-ODN ions generated in the course of the matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis. Thus, when [Ru(tpy)(dppz)(CH(3)CN)](2+)-ODN conjugate was hybridized to the complementary guanine (G)-rich target strand (T), and photolyzed in a buffer (pH 6.8), the corresponding aqua complex formed in situ immediately reacted with the G residue of the opposite strand, giving the cross-linked product. The highest yield (34%) of the photo cross-linked product obtained was with the ODN carrying two reactive Ru(2+) centers at both 3'- and 5'-ends. For ODNs carrying only one Ru(2+) complex, the yield of the cross-linked adduct in the corresponding duplex is found to decrease in the following order: 3'-Ru(2+)-ODN (22%) > 5'-Ru(2+)-ODN (9%) > middle-Ru(2+)-ODN (7%). It was also found that the photo cross-coupling efficiency of the tethered Ru(2+) complex with the target T strand decreased as the stabilization of the resulting duplex increased: 3'-Ru(2+)-ODN (VI.T) (DeltaT(m)(b) = 7 degrees C) < 5'-Ru(2+)-ODN (V.T) (DeltaT(m)(b) = 16 degrees C) < middle-Ru(2+)-ODN (VII.T) (DeltaT(m)(b) = 24.3 degrees C, Table 2). This shows that, with the rigidly packed structure, as in the duplex with middle-Ru(2+)-ODN, the metal center flexibility is considerably reduced, and consequently the accessibility of target G residue by the aquaruthunium moiety becomes severely restricted, which results in a poor yield in the cross-coupling reaction. The cross-linked product was characterized by PAGE, followed by MALDI-TOF MS.  相似文献   

16.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

17.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

18.
The molecular and electronic structures of the four members, [Cr(tpy)(2)](PF(6))(n) (n = 3-0; complexes 1-4; tpy = 2,2':6',2″-terpyridine), of the electron transfer series [Cr(tpy)(2)](n+) have been determined experimentally by single-crystal X-ray crystallography, by their electro- and magnetochemistry, and by the following spectroscopies: electronic absorption, X-ray absorption (XAS), and electron paramagnetic resonance (EPR). The monoanion of this series, [Cr(tpy)(2)](1-), has been prepared in situ by reduction with KC(8) and its EPR spectrum recorded. The structures of 2, 3, 4, 5, and 6, where the latter two compounds are the Mo and W analogues of neutral 4, have been determined at 100(2) K. The optimized geometries of 1-6 have been obtained from density functional theoretical (DFT) calculations using the B3LYP functional. The XAS and low-energy region of the electronic spectra have also been calculated using time-dependent (TD)-DFT. A consistent picture of the electronic structures of these octahedral complexes has been established. All one-electron transfer processes on going from 1 to 4 are ligand-based: 1 is [Cr(III)(tpy(0))(2)](PF(6))(3) (S = (3)/(2)), 2 is [Cr(III)(tpy(?))(tpy(0))](PF(6))(2) (S = 1), 3 is [Cr(III)(tpy(?))(2)](PF(6)) (S = (1)/(2)), and 4 is [Cr(III)(tpy(??))(tpy(?))](0) (S = 0), where (tpy(0)) is the neutral parent ligand, (tpy(?))(1-) represents its one-electron-reduced π radical monoanion, (tpy(2-))(2-) or (tpy(??))(2-) is the corresponding singlet or triplet dianion, and (tpy(3-))(3-) (S = (1)/(2)) is the trianion. The electronic structure of 2 cannot be described as [Cr(II)(tpy(0))(2)](PF(6))(2) (a low-spin Cr(II) (d(4); S = 1) complex). The geometrical features (C-C and C-N bond lengths) of these coordinated ligands have been elucidated computationally in the following hypothetical species: [Zn(II)Cl(2)(tpy(0))](0) (S = 0) (A), [Zn(II)(tpy(?))Cl(NH(3))](0) (S = (1)/(2)) (B), [Zn(II)(tpy(2-))(NH(3))(2)](0) (S = 0 or 1) (C), and [Al(III)(tpy(3-))(NH(3))(3)](0) (S = (1)/(2) and (3)/(2)) (D). The remarkable electronic structure of the monoanion has been calculated and experimentally verified by EPR spectroscopy to be [Cr(III)(tpy(2-))(tpy(??))](1-) (S = (1)/(2)), a complex in which the two dianionic tpy ligands differ only in the spin state. It has been clearly established that coordinated tpy ligands are redox-active and can exist in at least four oxidation levels.  相似文献   

19.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

20.
Relatively little is known about the kinetics or the pharmacological potential of organometallic complexes of osmium compared to its lighter congeners, iron and ruthenium. We report the synthesis of seven new complexes, [(eta6-arene)Os(NN)Cl]+, containing different bidentate nitrogen (N,N) chelators, and a dichlorido complex, [(eta6-arene)Os(N)Cl2]. The X-ray crystal structures of seven complexes are reported: [(eta6-bip)Os(en)Cl]PF6 (1PF6), [(eta6-THA)Os(en)Cl]BF4 (2BF4), [(eta6-p-cym)Os(phen)Cl]PF6 (5PF6), [(eta6-bip)Os(dppz)Cl]PF6 (6PF6), [(eta6-bip)Os(azpy-NMe2)Cl]PF6 (7PF6), [(eta6-p-cym)Os(azpy-NMe2)Cl]PF6 (8PF6), and [(eta6-bip)Os(NCCH3-N)Cl2] (9), where THA = tetrahydroanthracene, en = ethylenediamine, p-cym = p-cymene, phen = phenanthroline, bip = biphenyl, dppz = [3,2-a: 2',3'-c]phenazine and azpy-NMe2 = 4-(2-pyridylazo)-N,N-dimethylaniline. The chelating ligand was found to play a crucial role in enhancing aqueous stability. The rates of hydrolysis at acidic pH* decreased when the primary amine N-donors (NN = en, t1/2 = 0.6 h at 318 K) are replaced with pi-accepting pyridine groups (e.g., NN = phen, t1/2 = 9.5 h at 318 K). The OsII complexes hydrolyze up to 100 times more slowly than their RuII analogues. The pK*a of the aqua adducts decreased with a similar trend (pK*a = 6.3 and 5.8 for en and phen adducts, respectively). [(eta6-bip)Os(en)Cl]PF6/BF4 (1PF6/BF4) and [(eta6-THA)Os(en)Cl]BF4 (2BF4) were cytotoxic toward both the human A549 lung and A2780 ovarian cancer cell lines, with IC50 values of 6-10 microM, comparable to the anticancer drug carboplatin. 1BF4 binds to both the N7 and phosphate of 5'-GMP (ratio of 2:1). The formation constant for the 9-ethylguanine (9EtG) adduct [(eta6-bip)M(en)(9EtG)]2+ was lower for OsII (log K = 3.13) than RuII (log K = 4.78), although the OsII adduct showed some kinetic stability. DNA intercalation of the dppz ligand in 6PF6 may play a role in its cytotoxicity. This work demonstrates that the nature of the chelating ligand can play a crucial role in tuning the chemical and biological properties of [(eta6-arene)Os(NN)Cl]+ complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号