首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the theory of space–time elasticity and demonstrate that it is the extended reversible thermodynamics and gives the coupled model of thermoelasticity and heat conductivity and involves traditional thermoelasticity. We formulate the generally covariant variational model’s dynamic thermoelasticity and heat conductivity in which the basic kinematic and static variables are unified tensor objects (subject, matter). Variation statement defines the whole set of the initial-boundary problems for the 4D vector governing equation (Euler equation), the spatial projections of which define motion equations and the time projection gives the heat conductivity equation. We show that space–time elasticity directly implies the Fourier and the Maxwell–Cattaneo laws of heat conduction. However, space–time elasticity is richer than classical thermoelasticity, and it advocates its own equations of motion for coupled thermoelasticity. Moreover, we establish that the Maxwell–Cattaneo law and Fourier law can be defined for the reversible processes as compatibility equations without introducing dissipation. We argue that the present framework of space–time elasticity should prove adequate to describe the thermoelastic phenomena at low temperatures for interpreting the results of molecular simulations of heat conduction in solids and for the optimal heat and stress management in the microelectronic components and the thermoelectric devices.  相似文献   

2.
We obtain a solution of the Chazy system that consists of nine nonlinear algebraic equations. This system gives a necessary condition for the class of nonlinear third-order differential equations with six singularities to be of P-type. Translated from Neliniini Kolyvannya, Vol. 12, No. 1, pp. 92–98, January–March, 2009.  相似文献   

3.
We prove a Serrin-type regularity result for Leray–Hopf solutions to the Navier–Stokes equations, extending a recent result of Zhou [28].  相似文献   

4.
We establish conditions for the existence of solutions of boundary-value problems for integro-differential equations with constraints and substantiate the application of the iteration method to the solution of these equations. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 3, pp. 336–347, July–September, 2007.  相似文献   

5.
We get existence, uniqueness and non-uniqueness of viscosity solutions of uniformly elliptic fully nonlinear equations of the Hamilton–Jacobi–Bellman–Isaacs type with unbounded ingredients and quadratic growth in the gradient without hypotheses of convexity or properness. Some of our results are new even for equations in divergence form.  相似文献   

6.
7.
We study the relationship between invariant sets of systems of differential equations and the corresponding difference equations in terms of sign-constant Lyapunov functions. For systems of differential equations, we obtain a converse result concerning the existence of a positive-definite Lyapunov function whose zeros coincide with a given invariant manifold. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 2, pp. 280–285, April–June, 2006.  相似文献   

8.
It remains unknown whether or not smooth solutions of the 3D incompressible MHD equations can develop finite-time singularities. One major difficulty is due to the fact that the dissipation given by the Laplacian operator is insufficient to control the nonlinearity and for this reason the 3D MHD equations are sometimes regarded as “supercritical”. This paper presents a global regularity result for the generalized MHD equations with a class of hyperdissipation. This result is inspired by a recent work of Terence Tao on a generalized Navier–Stokes equations (T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equations, arXiv: 0906.3070v3 [math.AP] 20 June 2009), but the result for the MHD equations is not completely parallel to that for the Navier–Stokes equations. Besov space techniques are employed to establish the result for the MHD equations.  相似文献   

9.
We study the low Mach number asymptotic limit for solutions to the full Navier–Stokes–Fourier system, supplemented with ill-prepared data and considered on an arbitrary time interval. Convergencetowards the incompressible Navier–Stokes equations is shown.  相似文献   

10.
In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.  相似文献   

11.
Invariant submodels of rank two of systems of gas-dynamic equations with a general equation of state are described. All submodels (26 representatives) are divided into two, classes—evolutionary and stationary. New relations and independent variables and the coefficients and right sides of the corresponding systems of equations are given. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 2, pp. 50–55, March–April, 1999.  相似文献   

12.
In this paper, the Exp-function method with the aid of the symbolic computational system Maple is used to obtain the generalized solitonary solutions and periodic solutions for nonlinear evolution equations arising in mathematical physics, namely, (2+1)-dimensional Konopelchenko–Dubrovsky equations, the (3+1)-dimensional Jimbo–Miwa equation, the Kadomtsev–Petviashvili (KP) equation, and the (2+1)-dimensional sine-Gordon equation. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.  相似文献   

13.
Derivation of the Zakharov Equations   总被引:1,自引:0,他引:1  
This article continues the study, initiated in [27, 7], of the validity of the Zakharov model which describes Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for prepared initial data. We apply this result to the Euler–Maxwell equations which describes laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler–Maxwell equations in terms of WKB approximate solutions, the leading terms of which are solutions of the Zakharov equations. Due to the transparency properties of the Euler–Maxwell equations evidenced in [27], this study is carried out in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of JOLY, MéTIVIER and RAUCH [12, 13]; recent results by LANNES on norms of pseudodifferential operators [14]; and a semiclassical paradifferential calculus.  相似文献   

14.
We develop the Cartan-Monge geometric approach to the characteristic method for nonlinear partial differential equations of the first and higher orders. The Hamiltonian structure of characteristic vector fields related with nonlinear partial differential equations of the first order is analyzed, and tensor fields of special structure are constructed for defining characteristic vector fields naturally related with nonlinear partial differential equations of higher orders. Published in Neliniini Kolyvannya, Vol. 10, No. 1, pp. 26–36, January–March, 2007.  相似文献   

15.
We study the problem of decomposition of degenerate singularly perturbed systems of differential equations. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 3, pp. 401–415, July–September, 2006.  相似文献   

16.
Nonlocal generalizations of Burgers’ equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185–202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3–4):1463–1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3–4):303–320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220–2240, 2011). In this article, we show how the verification of Hunter’s stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.  相似文献   

17.
Questions of the applicability of simplifying modifications of the Burnett equations are studied with reference to the problem of the shock wave structure in a monatomic gas. As distinct from the complete system of Burnett equations, the order of the systems of modified equations is the same as that of the Navier-Stokes equations, and the equations are stable with respect to shortwave perturbations. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 164–176, May–June, 1998. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-01244).  相似文献   

18.
This paper studies the asymptotic limit for solutions to the equations of magnetohydrodynamics, specifically, the Navier–Stokes–Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behavior of the magnetic field, when Mach number and Alfvén number tends to zero. The introduced system is considered on a bounded spatial domain in \mathbbR3{\mathbb{R}^{3}}, supplemented with conservative boundary conditions. Convergence towards the incompressible system of the equations of magnetohydrodynamics is shown.  相似文献   

19.
The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard–Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler–Poincaré and Hamilton–Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler–Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange–Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.  相似文献   

20.
Equations are derived for stress concentration near a crack of closed contour lying in a plane. A system of one-dimensional integral equations for the concentration factor is obtained. The right sides of the equations contain the initial approximation—a solution of the problem of a circular crack whose sides are acted upon by nonaxisymmetric loading. Mining Institute, Siberian Division, Russian Academy of Sciences, Novosibirsk 630091. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 5, pp. 143–148, September–October, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号