首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

2.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

3.
Vapour pressures of water over saturated solutions of cesium chloride, cesium bromide, cesium nitrate, cesium sulfate, cesium formate, and cesium oxalate were determined as a function of temperature. These vapour pressures were used to evaluate the water activities, osmotic coefficients and molar enthalpies of vapourization. Molar enthalpies of solution of cesium chloride, ΔsolHm(T = 295.73 K; m = 0.0622 mol · kg−1) = (17.83 ± 0.50) kJ · mol−1; cesium bromide, ΔsolHm(T = 293.99 K; m = 0.0238 mol · kg−1) = (26.91 ± 0.59) kJ · mol−1; cesium nitrate, ΔsolHm(T = 294.68 K; m = 0.0258 mol · kg−1) = (37.1 ± 2.3) kJ · mol−1; cesium sulfate, ΔsolHm(T = 296.43 K; m = 0.0284 mol · kg−1) = (16.94 ± 0.43) kJ · mol−1; cesium formate, ΔsolHm(T = 295.64 K; m = 0.0283 mol · kg−1) = (11.10 ± 0.26) kJ · mol−1 and ΔsolHm(T = 292.64 K; m = 0.0577 mol · kg−1) = (11.56 ± 0.56) kJ · mol−1; and cesium oxalate, ΔsolHm(T = 291.34 K; m = 0.0143 mol · kg−1) = (22.07 ± 0.16) kJ · mol−1 were determined calorimetrically. The purity of the chemicals was generally greater than 0.99 mass fraction, except for HCOOCs and (COOCs)2 where purities were approximately 0.95 and 0.97 mass fraction, respectively. The uncertainties are one standard deviations.  相似文献   

4.
A micro static-bomb combustion calorimeter, developed from a 1107 Parr semi-micro bomb, has been provided with a new micro-bomb and calorimetric bucket. In the best conditions of operation, the energy equivalent of this calorimetric arrangement is just ε(calor)=(731.82 ± 0.22) J · K−1, which means an uncertainty of 0.03 per cent for the calibration with benzoic acid NIST 39j. This combustion calorimeter has been used in the measurement of the enthalpy of combustion of the succinic acid and acetanilide, giving −(1489.3 ± 1.6) kJ · mol−1 and −(4222.5 ± 1.1) kJ · mol−1, respectively, for these substances.  相似文献   

5.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

6.
《Thermochimica Acta》1998,316(1):101-108
A horizontal thermal analysis system was adopted for the measurement of vapour pressure of C60 using the vapour transport technique. The experimental precautions taken in order to ensure measurement of equilibrium vapour pressure by the transpiration method are described. The equilibrium nature of these measurements was ensured by the existence of plateau regions in the isothermal plots of apparent vapour pressure as a function of flow rate of the carrier gas. To verify the applicability of this TG based transpiration method, vapour pressure of CsI was measured to be log(p/Pa)=11.667±0.013−(9390±0.078)/T (K) over the range 737–874 K yielding a value of 195.6 kJ mol−1 for the third-law enthalpy of sublimation, ΔH0sub,298 of CsI, the value which compares well with the literature data. The vapour pressure measurements on C60 over the range 789–907 K could be represented by log(p/Pa)=9.018±0.061−(7955±0.280)/T(K). Third-law treatment of the data yielded a value of 183.5±1.0 kJ mol−1 for ΔH0sub,298 of C60 which is in good agreement with some of the other vapour pressure measurements in the literature, if subjected to third-law processing using the same set of free energy functions reliably reported in the literature.  相似文献   

7.
New compounds of aspartic acid Cs(ASP) · nH2O (n = 0, 1) have been synthesized and characterized by XRD, IR and Raman spectroscopy as well as TG. The structural formula of this new compound was Cs(ASP) · nH2O (n = 0, 1). The enthalpy of solution of Cs(ASP) · nH2O (n = 0, 1) in water were determined. With the incorporation of the standard molar enthalpies of formation of CsOH(aq) and ASP(s), the standard molar enthalpy of formation of −(1202.9 ± 0.2) kJ · mol−1 of Cs(ASP) and −(1490.7 ± 0.2) kJ · mol−1 of Cs(ASP) · H2O were obtained.  相似文献   

8.
The high-temperature heat capacity of zirconia was directly measured by differential scanning calorimetry between T = (1050 and 1700) K and derived from the heat content measured by transposed temperature drop calorimetry between T = (970 and 1770) K, including the monoclinic–tetragonal (m–t) phase transition region. The enthalpy and entropy of the m–t phase transition are (5.43 ± 0.31) kJ · mol−1 and (3.69 ± 0.21) J · K−1 · mol−1, respectively. Values of thermodynamic functions are provided from room temperature to 2000 K.  相似文献   

9.
The standard (p° = 0.1 MPa) molar energies of combustion of 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde were measured by static bomb combustion calorimetry; the Calvet high-temperature microcalorimetry was used to measure the enthalpies of vaporization of these liquid compounds. The standard molar enthalpies of formation of the three compounds, in the gaseous phase, at T = 298.15 K, have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of phase transition, as (106.8 ± 1.1) kJ · mol?1, ?(207.4 ± 1.3) kJ · mol?1, and ?(151.9 ± 1.1) kJ · mol?1, for 2-furancarbonitrile, 2-acetylfuran, and 3-furaldehyde, respectively.Standard molar enthalpies of formation are discussed in terms of the isomerization ortho meta. Enthalpic increment values of the introduction of the functional groups –CN, –CHO, and –COCH3 were also compared with some other heterocycles; i.e. thiophene and pyridine.  相似文献   

10.
The molar enthalpies of reaction of metallic barium with 0.047 mol·dm−3 HClO4 as well as the molar enthalpies of dissolution of BaCl2 in 1.01 mol·dm−3 HCl and in water have been measured at T=298.15 K in a sealed swinging calorimeter with an isothermal jacket. From these results the standard molar enthalpy of formation of the barium ion in an aqueous solution at infinite dilution, as well as the enthalpies of formation of barium chloride and barium perchlorate, are calculated to be: ΔfH0m(Ba2+,aq)=−(535.83±1.25) kJ · mol−1; ΔfH0m(BaCl2,cr)=−(855.66±1.28) kJ · mol−1; and ΔfH0m(BaClO4,cr)=−(796.26±1.35) kJ · mol−1. The results obtained are discussed and compared with previous experimental values.  相似文献   

11.
The energetic study of 4-nitro-2,1,3-benzothiadiazole has been developed using experimental techniques together with computational approaches. The standard (p° = 0.1 MPa) molar enthalpy of formation of crystalline 4-nitro-2,1,3-benzothiadiazole (181.9 ± 2.3 kJ · mol−1) was determined from the experimental standard molar energy of combustion −(3574.3 ± 1.3) kJ · mol−1, in oxygen, measured by rotating-bomb combustion calorimetry at T = 298.15 K. The standard (p° = 0.1 MPa) molar enthalpy of sublimation, at T = 298.15 K, (101.8 ± 4.3) kJ · mol−1, was determined by a direct method, using the vacuum drop microcalorimetric technique. From the latter value and from the enthalpy of formation of the solid, it was calculated the standard (p° = 0.1 MPa) enthalpy of formation of gaseous 4-nitro-2,1,3-benzothiadiazole as (283.7 ± 4.9) kJ · mol−1. Standard ab initio molecular orbital calculations were performed using the G3(MP2)//B3LYP composite procedure and several working reactions in order to derive the standard molar enthalpy of formation 4-nitro-2,1,3-benzothiadiazole. The ab initio results are in good agreement with the experimental data.  相似文献   

12.
Thermochemical properties of uracil and thymine have been evaluated using additional experiments. Standard (p0 = 0.1 MPa) molar enthalpies of formation in the gas phase at T = 298.15 K for uracil −(298.1 ± 0.6) and for thymine −(337.6 ± 0.9) kJ · mol−1 have been derived from energies of combustion measured by static bomb combustion calorimetry and molar enthalpies of sublimation determined using the transpiration method. The G3 and G4 quantum-chemical methods were used for calculations of theoretical gaseous enthalpies of formation being in very good agreement with the re-measured experimental values.  相似文献   

13.
The thermodynamic parameters, ΔBG, ΔBH, ΔBS, and ΔBCp, of the drugs flurbiprofen (FLP), nabumetone (NAB), and naproxen (NPX) binding to β-cyclodextrin (βCD) and to γ-cyclodextrin (γCD) in 0.10 M sodium phosphate buffer were determined from isothermal titration calorimetry (ITC) measurements over the temperature range from 293.15 K to 313.15 K. The heat capacity changes for the binding reactions ranged from −(362 ± 48) J · mol−1 · K−1 for FLP and −(238 ± 90) J · mol−1 · K−1 for NAB binding in the βCD cavity to 0 for FLP and −(25.1 ± 9.2) J · mol−1 · K−1 for NPX binding in the larger γCD cavity, implying that the structure of water is reorganized in the βCD binding reactions but not reorganized in the γCD binding reactions. Comparison of the fluorescence enhancements of FLP and NAB upon transferring from the aqueous buffer to isopropanol with the maximum fluorescence enhancements observed for their βCD binding reactions indicated that some localized water was retained in the FLP–βCD complex and almost none in the NAB–βCD complex. No fluorescence change occurs with drug binding in the larger γCD cavity, indicating the retention of the bulk water environment in the drug–γCD complex. Since the specific drug binding interactions are essentially the same for βCD and γCD, these differences in the retention of bulk water may account for the enthalpically driven nature of the βCD binding reactions and the entropically driven nature of the γCD binding reactions.  相似文献   

14.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

15.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

16.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

17.
The strain energy of phenanthrene was derived to be (4.9 ± 2.8) kJ · mol−1, on the basis of the latest standard enthalpies of formation of polycyclic aromatic hydrocarbons. This strain energy agrees well with those estimated from a semi-empirical calculation and from the basicity in hydrogen fluoride solution. The calculation again confirmed the standard enthalpy of formation of phenanthrene, ΔfH0(g)=(201.7±2.9) kJ · mol−1 at T=298.15 K, which was determined by Nagano (J. Chem. Thermodyn. 34 (2002) 377–383). The coupling constant J4,5 in 1H-n.m.r. spectrum of phenanthrene in CDCl3 solution was determined to be 0.55 Hz, which indicates no significant through-space coupling between the 4- and 5-hydrogens.  相似文献   

18.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

19.
An energetic coordination compound [Co2(C2H5N5)2(C7H3NO4)2(H2O)2]·2H2O (Hdatrz(C2H5N5) = 3,5-diamino-1,2,4-triazole, H2pda(C7H5NO4) = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by elemental analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound possessed a di-nuclear unit and featured a 3D super-molecular structure. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound and the standard molar enthalpy of dissolution of reactants and products was measured by the RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2475.0 ± 3.1) kJ · mol−1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be (1.13 ± 0.02) J · K−1 · g−1 by RD496-2000 calorimeter.  相似文献   

20.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号