首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Upper critical solution temperatures (UCST) of water‐phenol systems are reported with 0.1 mol kg?1 halide salts, carboxylic acids, 1.0% PEG 200 in water, and 0.01 mol kg?1 surfactants and polynuclear aromatic compounds namely benzene, naphthalene, anthracene, chrysene; and benzene derivatives solutions in phenol. The valence electrons and shell numbers, bascity, ‐CH3 and ‐CH2‐, hydrophilic, hydrophobic and π conjugated electrons of respective additives have been noted to affect the UCST values and mutual solubilities of the water and phenol. The surfactants decrease the UCST values with higher mutual solubilities due to effective hydrophilic as well as hydrophobic interactions with aqueous and organic phases, respectively. The stronger structure breaking action of the 3(‐OH) of the glycerol outweighs than those of the 3(‐COO?) and 1(‐OH) of the citric acid and the urea does produce almost equal UCST values as compared to glycerol. A decrease in the UCST values is noted with number of conjugated π electrons of the benzene, naphthalene, anthracene, and chrysene. In general, the dTc/dx2 values of salts for 0.20–0.16 mole fractions of phenol are found positive while for 0.055–0.052 mole fractions, the negative.  相似文献   

2.
Solubilities of l -glutamic acid, 3-nitrobenzoic acid, p -toluic acid, calcium-l -lactate, calcium gluconate, magnesium- dl -aspartate, and magnesium- l -lactate in water were determined in the temperature range 278 K to 343 K. The apparent molar enthalpies of solution at T =  298.15 K as derived from these solubilities areΔsolHm (l -glutamic acid,msat =  0.0565 mol · kg  1)  =  30.2 kJ · mol  1,ΔsolHm (3-nitrobenzoic acid, m =  0.0188 mol · kg  1)  =  28.1 kJ · mol  1, ΔsolHm( p - toluic acid, m =  0.00267 mol · kg  1)  =  23.9 kJ · mol  1,ΔsolHm (calcium- l -lactate tetrahydrate,m =  0.2902 mol · kg  1)  =  25.8 kJ · mol  1,ΔsolHm (calcium gluconate, m =  0.0806 mol · kg  1)  =  22.1 kJ · mol  1, ΔsolHm(magnesium-dl -aspartate tetrahydrate, m =  0.1469 mol · kg  1)  =  11.5 kJ · mol  1, andΔsolHm (magnesium- l -lactate trihydrate,m =  0.3462 mol · kg  1)  =  3.81 kJ · mol  1.  相似文献   

3.
Excess molar enthalpies HmEand excess molar volumesVmE of (1,3-dimethyl-2-imidazolidinone  +  benzene, or methylbenzene, or 1,2-dimethylbenzene, or 1,3-dimethylbenzene, or 1,4-dimethylbenzene, or 1,3,5-trimethylbenzene, or ethylbenzene) over the whole range of compositions have been measured at T =  298.15 K. The excess molar enthalpy values were positive for five of the seven systems studied and the excess molar volume values were negative for six of the seven systems studied. The excess enthalpy ranged from a maximum of 435 J · mol  1for (1,3-dimethyl-2-imidazoline  +  1,3,5-trimethylbenzene) to a minimum of   308 J · mol  1for (1,3-dimethyl-2-imidazoline  +  benzene). The excess molar volume values ranged from a maximum of 0.95cm3mol  1 for (1,3-dimethyl-2-imidazoline  +  ethylbenzene) and a minimum of   1.41 cm3mol  1for (1,3-dimethyl-2-imidazoline  +  methylbenzene). The Redlich–Kister polynomial was used to correlate both the excess molar enthalpy and the excess molar volume data and the NRTL and UNIQUAC models were used to correlate the enthalpy of mixing data. The NRTL equation was found to be more suitable than the UNIQUAC equation for these systems. The results are discussed in terms of the polarizability of the aromatic compound and the effect of methyl substituents on the benzene ring.  相似文献   

4.
Vapour pressures of water over saturated solutions of magnesium, calcium, nickel and zinc acetates were determined as a function of temperature. The vapour pressures served to evaluate the water activities, osmotic coefficients and molar enthalpies of vaporization. Molar enthalpies of solution of magnesium acetate tetrahydrate,ΔsolHm (T =  294.71K ;m =  0.01 mol · kg  1)  =   (15.65  ±  0.97)kJ · mol  1; calcium acetate,ΔsolHm (T =  297.18K ;m =  0.01 mol · kg  1)  =   (28.15  ±  0.28)kJ · mol  1; zinc acetate dihydrate,ΔsolHm (T =  297.36K ;m =  0.01 mol · kg  1)  =   (22.49  ±  0.90)kJ · mol  1and lead acetate trihydrate,ΔsolHm (T =  297.36K ;m =  0.0086 mol · kg  1)  =  (22.46  ±  0.94)kJ · mol  1, were determined calorimetrically.  相似文献   

5.
The gamma radiolysis of aqueous benzene solutions was studied under various conditions (oxygenated, aerated and anoxic) to ascertain the role that oxygen plays in the destruction of benzene. For the oxygenated and aerated systems, phenol and biphenyl were the major quantified products. For the anoxic system, phenol was the sole quantified product. Benzene was initially consumed with approximately the same yield in each of the three systems; G(–benzene) was 0.49 μmol J–1. Initial yields of phenol, G(phenol), were found to be 0.12, 0.060 and 0.030 μmol J–1 for the oxygenated, aerated and anoxic systems, respectively. Biphenyl was initially formed with G=0.028 and 0.019 μmol J–1 in the oxygenated and aerated systems, respectively. The percent conversion of benzene to CO2 after an absorbed dose of 2500 kGy was 55.1%, 30.5% and 12.5%, respectively, for the oxygenated, aerated and anoxic systems. The last traces of benzene disappeared by a dose of ca. 60 kGy in all three systems. A mechanism was proposed for each system that depended upon the presence or absence of O2. The total solution toxicity for each system was calculated by summing the individual toxicities of benzene and each quantified product. For the oxygenated and aerated systems, the total solution toxicity was found to go through a maximum at a dose of 22 kGy and then decrease to a value below that of the original solution. The total solution toxicity of the anoxic system was found to decrease from the onset of irradiation.  相似文献   

6.
At a constant ionic strength corresponding to human urine (Ic =  0.300 mol · dm  3), the solubilities of xanthine were measured as a function of   lg{c (H + ) / co} (co =  1 mol · dm  3) at the temperatures T =  298.15 K and T =  310.15 K, respectively. Highly reproducible solubility and dissociation constants were obtained. Also, for the first time, the dissolution enthalpy of xanthine was determined calorimetrically. The values of this quantity obtained from both calorimetric determination and temperature dependence of solubility equilibrium constants are thermodynamically consistent.  相似文献   

7.
The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol · kg?1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 · 10?8 to 143 · 10?8) mol · kg?1. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg · mol?1.The standard molar Gibbs free energies, ΔtrG°, enthalpies, ΔtrH°, and entropies, ΔtrS°, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated ΔtrG° values were positive [(20 to 1230) J · mol?1]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.  相似文献   

8.
H radicals react with chlorobenzoic acids and chlorobenzene (k(H+substrates)=(0.7–1.5)×109 dm3 mol−1 s−1) by addition to the benzene ring forming H adducts with characteristic absorption bands in the range of 310–360 nm. The rate constants for their second-order decay are 2k=(3.5–6)×108 dm3 mol−1 s−1. By reduction with eaq fragmentation and chloride release was established for 2- and 4-chlorobenzoic acid, for 3-chlorobenzoic acid the addition of electrons to the carboxylate group was observed by pulse radiolysis. By gamma radiolysis could be proved that these radical anions undergo intramolecular electron transfer and quantitave dechlorination. The efficiency in degradation was 4-chlorobenzoic acid>3-chlorobenzoic acid>2-chlorobenzoic acid. Benzoic acid was found as final product for all substrates.  相似文献   

9.
Present study deals with the adsorption of phenol on carbon rich bagasse fly ash (BFA) and activated carbon-commercial grade (ACC) and laboratory grade (ACL). BFA is a solid waste obtained from the particulate collection equipment attached to the flue gas line of the bagasse-fired boilers of cane sugar mills. Batch studies were performed to evaluate the influences of various experimental parameters like initial pH (pH0), contact time, adsorbent dose and initial concentration (C0) on the removal of phenol. C0 varied from 75 to 300 mg/l for the adsorption isotherm studies and the effect of temperature on adsorption. Optimum conditions for phenol removal were found to be pH0  6.5, adsorbent dose ≈10 g/l of solution and equilibrium time ≈5 h. Adsorption of phenol followed pseudo-second order kinetics with the initial sorption rate for adsorption on ACL being the highest followed by those on BFA and ACC. The effective diffusion coefficient of phenol is of the order of 10−10 m2/s. Equilibrium isotherms for the adsorption of phenol on BFA, ACC and ACL were analysed by Freundlich, Langmuir, Temkin, Redlich–Peterson, Radke–Prausnitz and Toth isotherm models using non-linear regression technique. Redlich–Peterson isotherm was found to best represent the data for phenol adsorption on all the adsorbents. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for phenol adsorption on BFA were estimated as 1.8 MJ/kg K and 0.5 MJ/kg, respectively. The high negative value of change in Gibbs free energy (ΔG°) indicates the feasible and spontaneous adsorption of phenol on BFA. The values of isosteric heat of adsorption varied with the surface loading of phenol.  相似文献   

10.
The reaction of carbonate radical with phenol in aqueous solution has been investigated in systems in which carbonate radicals were generated by UV irradiation of an aqueous solution of [Co(NH3)5CO3]+ (pH 8.0 phosphate buffer). Both steady state and time resolved photolysis experiments were performed. Upon continuous irradiation of complex phenol mixtures, phenol was converted into benzoquinone and dihydroxybenzenes. Benzoquinone was the major by-product in the early stages of the reaction. Laser flash excitation (266 and 355 nm) of the cobalt complex clearly showed the formation of the carbonate radical. When phenol was added to the solution of the complex, a second species was observed which was assigned to the phenoxyl radical. The second-order rate constant of reaction between phenol and carbonate radical was found to be equal to 1.6 × 107 M−1 s−1, in agreement with literature data of 2.2 × 107 M−1 s−1.  相似文献   

11.
Faujasite type zeolite membranes were synthesized on porous ceramic alumina supports by using direct (in situ) and secondary (seeded) growth methods. In the secondary growth method a seed layer of ZSM-2 nanocrystals (prepared according to a report by Schoeman et al. J. Colloid Interface Sci. 1995, 170, 449–456) was deposited on the surface of the support before the hydrothermal growth. For both in situ and secondary growth, the mixture composition was 4.17 Na2O:1.0 Al2O3:10 TEA (triethanol ammonium):1.87 SiO2:460 H2O. X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron microprobe analysis (EPMA), indicate well intergrown 5–30 μm thick FAU films with Si/Al ∼1–1.5. The separation of saturated/unsaturated hydrocarbon mixtures is demonstrated over a range of temperatures (40–160°C). The mixtures examined (and the corresponding equimolar mixture separation factors) are benzene/cyclohexane (160), benzene/n-hexane (144), toluene/n-heptane (45), propylene/propane (6.2), and ethylene/methane (8.4). In all cases, the membranes are unsaturated hydrocarbon permselective. With equimolar feed mixtures (5 kPa/5 kPa benzene/cyclohexane) and in the temperature range 65–160°C, the membranes exhibit separation factor of 20–160 with the benzene flux in the range 10−4–10−3 mol m−2 s−1. Decreasing the total feed partial pressure (0.31/0.31 kPa benzene/cyclohexane) reduces both separation factor (12) and benzene flux. Similar trend is observed when the benzene/cyclohexane ratio in the feed mixture (0.5/9.5 kPa benzene/cyclohexane) is reduced. A sorption diffusion model based on the Stefan–Maxwell formulation has also been employed to show that the benzene/cyclohexane separation can mainly be attributed to differences of their adsorption properties.  相似文献   

12.
The samples of dibarium magnesium orthoborate Ba2Mg(BO3)2 were synthesized by solid-state reaction. The X-ray diffraction (XRD) patterns and Raman spectra of the samples were collected. Electronic structure and vibrational spectroscopy of Ba2Mg(BO3)2 were systematically investigated by first principle calculation. A direct band gap of 4.4 eV was obtained from the calculated electronic structure results. The top valence band is constructed from O 2p states and the low conduction band mainly consists of Ba 5d states. Raman spectra for Ba2Mg(BO3)2 polycrystalline were obtained at ambient temperature. The factor group analysis results show the total lattice modes are 5Eu + 4A2u + 5Eg + 4A1g + 1A2g + 1A1u, of which 5Eg + 4A1g are Raman-active. Furthermore, we obtained the Raman active vibrational modes as well as their eigenfrequencies using first-principle calculation. With the assistance of the first-principle calculation and factor group analysis results, Raman bands of Ba2Mg(BO3)2 were assigned as Eg (42 cm−1), A1g (85 cm−1), Eg (156 cm−1), Eg (237 cm−1), A1g (286 cm−1), Eg (564 cm−1), A1g (761 cm−1), A1g (909 cm−1), Eg (1165 cm−1). The strongest band at 928 cm−1 in the experimental spectrum is assigned to totally symmetric stretching mode of the BO3 units.  相似文献   

13.
《Fluid Phase Equilibria》2002,198(1):67-80
The solubilities of three veterinary amphenicol bacteriostats, chloramphenicol, florfenicol and thiamphenicol, were measured in supercritical carbon dioxide (SC-CO2) by a re-circulating method at temperatures of 313.15 and 333.15 K and pressures ranging from 11.0 to 49.0 MPa. These compounds displayed very limited solubility in SC-CO2 (10−5 to 10−7 mole fraction) over the range of experimental conditions. Chloramphenicol had the highest observed solubility of the three amphenicols, while the solubilities of florfenicol and thiamphenicol were almost an order of magnitude lower. The experimental solubility data were correlated with seven known density-based models. The density models (ln y versus ln ρ or ln ρr) gave better correlation than the semi-log scale of ln y versus ρr. Four models for ln E versus density correlations also gave better correlation than the semi-log scale of ln y versus ρr by introducing the enhancement factor E. The correlation accuracy of all the seven models mainly depends on the system investigated, measured density and temperature range.  相似文献   

14.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

15.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

16.
As part of an ongoing study of titanate-based ceramic materials for the disposal of surplus weapons-grade plutonium, we report thermodynamic properties of a sample ofzirconium titanate (ZrTiO4) quenched from a high-temperature synthesis. The standard enthalpy of formationΔfHmo was obtained by using high-temperature oxide-melt solution calorimetry. The molar heat capacity Cp, mwas measured fromT =  13 K to T =  400 K in an adiabatic calorimeter and extrapolated toT =  1800 K by using an equation fitted to the low-temperature results. The results atT =  298.15 K areΔfHmo =   (2024.1  ±  4.5)kJ · mol  1,Δ0TSmo =  (116.71  ±  0.31 )J · K  1· mol  1, andΔfGmo =   (1915.8  ±  4.5 )kJ · mol  1; the molar entropy includes a contribution of 2 R ln2 to account for the random mixing of Zr4 + and Ti4 + on a four-fold crystallographic site. Values for the standard molar Gibbs energies and enthalpies of formation of ZrTiO4,ΔfGmoandΔfHmo , and for the free energies and enthalpies for the reaction to form ZrTiO4(cr) from ZrO2(cr) and TiO2(cr), are tabulated over the temperature interval, 0 (T / K) 1800. From these results, we conclude that ZrTiO4is not stable with respect to (ZrO2 +  TiO2) at T =  298.15 K, but becomes so at T =  (1250  ±  150) K.  相似文献   

17.
《Polyhedron》2005,24(16-17):2269-2273
Two ion-pair compounds, consisting of 1-(4′-R-benzyl)pyridinium ([RBzPy]+, R = NO2 (1) and Br (2)) and [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)2] stack into dimers, which further construct into two-leg ladder through terminal S⋯S interactions in 1, lateral S⋯S interactions in 2. The weak H-bonding interactions of C–H⋯S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ∼100 K was observed in 1. An AFM ordering below ∼11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to Δ/kB = 36.1 K, zJ = −0.91 K, C = 3.2 × 10−3 emu K mol−1 and χ0 = −4.0 × 10−6 emu mol−1 with g of 2.0 fixed.  相似文献   

18.
The standard molar energies of combustion, at T = 298.15 K, of crystalline 1,4-benzodioxan-2-carboxylic acid and 1,4-benzodioxan-2-hydroxymethyl were measured by static bomb calorimetry in an oxygen atmosphere. The standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry. These values were used to derive the standard molar enthalpies of formation of the compounds in the gas phase at T = 298.15 K: 1,4-benzodioxan-2-carboxylic acid ?(547.7 ± 3.0) kJ · mol?1 and 1,4-benzodioxan-2-hydroxymethyl ?(374.2 ± 2.3) kJ · mol?1.In addition, density functional theory calculations using the B3LYP hybrid exchange–correlation energy functional with extended basis sets, 6-311G7 and cc-pVTZ, have been performed for the compounds studied. We have also tested two more accurate computational procedures involving multiple levels of electron structure theory in order to get reliable estimates of the thermochemical parameters of the compounds studied. The agreement between experiment and theory gives confidence to estimate the enthalpies of formation of other 2-R derivatives of 1,4-benzodioxan (R = –CH2COOH, –OH, –COCH3, –CHO, –CH3, –CN, and –NO2).  相似文献   

19.
This paper deals with the influence of the electron beam energy (E=1.2–3 MeV; I=20–125 μA; DR=1.3–8.3 kGy s−1) on the degradation of phenol in aqueous solution. The decomposition of phenol and the concentration of its principal by-products are significantly influenced by the energy of the electron beam. The degradation yield increases with the electron energy. A simplified phenomenologic model of the reactor was proposed to describe the results.  相似文献   

20.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号